
Chapter 2: Linear Algebra - Exercises

2.1
a. We are going to show that (R\{−1}, ?) with the operator defined as

a ? b := ab+ a+ b, a, b ∈ R\{−1}

is an Abelian group. We need to verify that it satisfies all the necessary properties for being a
standard group, then verify that the operation is also commutative.
1. Closure. For any x, y ∈ R\{−1}, then x ? y ∈ R\{−1}. Clearly,

x ? y = xy + x+ y ∈ R,

but we must also make sure that no two values give −1 since this is not included in the set. First,
we rewrite the expression:

x ? y = xy + x+ y = (x+ 1)(y + 1)− 1

Setting this equal to −1.
(x+ 1)(y + 1)− 1 = −1

Rewriting:
(x+ 1)(y + 1) = 0

Recalling that neither x nor y can be −1, we can see from this equation that we will never get 0.
This shows that R\{−1} is closed under ?.
2. Associativty. Assuming x, y, z ∈ R\{−1} and we are going to show that

(x ? y) ? z = x ? (y ? z).

Left hand side:

(x ? y) ? z = (xy + x+ y) ? z

= (xy + x+ y)z + (xy + x+ y) + z

= zxy + zx+ zy + xy + x+ y + z

= xyz + xy + xz + yz + x+ y + z

Right hand side:

x ? (y ? z) = x ? (yz + y + z)

= x(yz + y + z) + x+ (yz + y + z)

= xyz + xy + xz + x+ yz + y + z

= xyz + xy + xz + yz + x+ y + z

Both expressions end up equal, proving associativity.
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3. Neutral element. For any x ∈ R\{−1}, we want to find some e ∈ R\{−1} such that

x ? e = xe+ x+ e = x

e ? x = ex+ e+ x = x

Both are satisfied when e = 0 ∈ R\{−1} which is the neutral element.
4. Inverse element. For any x ∈ R\{−1} we want to find some inverse i ∈ R\{−1} such that
x ? i = 0.

x ? i = xi+ x+ i = 0

Collecting i terms and factoring out.

(x+ 1)i+ x = 0

Solving for i.

i = − x

x+ 1

This is how the inverse is calculated. It is not defined for x = −1 but that is not in the set.
5. Commutativity. We also need this property to verify that we have an Abelian group. Let
x, y ∈ R\{−1}. Then:

x ? y = xy + x+ y = yx+ y + x = y ? x.

We have verified all properties, so we can conclude that (R\{−1}, ?) is an Abelian group.
b. Solving the equation 3 ? x ? x = 15. First we calculate the left side.

3 ? x ? x = 3 ? (xx+ x+ x)

= 3 ? (x2 + 2x)

= 3(x2 + 2x) + 3 + x2 + 2x

= 3x2 + 6x+ 3 + x2 + 2x

= 4x2 + 8x+ 3

We have
4x2 + 8x+ 3 = 15,

which is also
4x2 + 8x− 12 = 0,

which can be further simplifed into
x2 + 2x− 3 = 0.

By using the quadratic formula, it can be shown that x = 1 or x = −3. These solutions can be
verified by replacing the values for x in the original equation.
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Checking x = −3.

3 ? x ? x = 3 ? (−3) ? (−3)

= 3 ? ((−3)(−3) + (−3) + (−3)

= 3 ? (9− 6)

= 3 ? 3

= 3 · 3 + 3 + 3

= 9 + 6

= 15

Checking x = 1.

3 ? x ? x = 3 ? 1 ? 1

= 3 ? (1 · 1 + 1 + 1)

= 3 ? 3

= 3 · 3 + 3 + 3

= 9 + 6

= 15

2.2 - Skipped
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2.3
We have the following set defined

G =


1 x z

0 1 y
0 0 1

 ∈ R3×3

∣∣∣∣∣x, y, z ∈ R

 ,

and the operator · is defined as the standard matrix multiplication. We will first determine if (G, ·)
is a group. We check the properties.
1. Closure.
We will take two arbitrary matrices from G, multiply them, and check if their product qualifies as
a member of G. Since we are multiplying two 3× 3 matrices, the result will be a 3× 3 matrix.

Assuming a, b, c ∈ R and x, y, z ∈ R.1 a c
0 1 b
0 0 1

1 x z
0 1 y
0 0 1

 =

1(1) + a(0) + c(0) 1(x) + a(1) + c(0) 1(z) + a(y) + c(1)
0(1) + 1(0) + b(0) 0(x) + 1(1) + b(0) 0(z) + 1(y) + b(1)
0(1) + 0(0) + 1(0) 0(x) + 0(1) + 1(0) 0(z) + 0(y) + 1(1)



=

1 + 0 + 0 x+ a+ 0 z + ay + c
0 + 0 + 0 0 + 1 + 0 0 + y + b
0 + 0 + 0 0 + 0 + 0 0 + 0 + 1



=

1 x+ a z + ay + c
0 1 y + b
0 0 1


Since x+ a, y + b, z + ay + c ∈ R, this matrix is in G which shows we have closure.
2. Associativty.
For matrices A,B,C ∈ G we have to show that (AB)C = A(BC). This can be done explicitly
by multiplying three matrices in both ways and comparing the results. Assuming a1, a2, a3 ∈ R,
b1, b2, b3 ∈ R and c1, c2, c3 ∈ R, we define the following three matrices.

A =

1 a1 a3

0 1 a2

0 0 1

 , B =

1 b1 b3
0 1 b2
0 0 1

 , C =

1 c1 c3
0 1 c2
0 0 1


Checking the first multiplication.

(AB)C =

1 a1 + b1 a3 + a1b2 + b3
0 1 a2 + b2
0 0 1

C =

1 a1 + b1 + c1 a3 + b3 + c3 + a1b2 + a1c2 + b1c2
0 1 a2 + b2 + c2
0 0 1


Checking the second multiplication.

A(BC) = A

1 b1 + c1 b3 + b1c2 + c3
0 1 b2 + c2
0 0 1

 =

1 a1 + b1 + c1 a3 + b3 + c3 + a1b2 + a1c2 + b1c2
0 1 a2 + b2 + c2
0 0 1


The matrices are the same and are members of G (which follows from the closure property). This
shows that associativity is satisfied.
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3. Neutral element.
We are working with 3×3 matrices, and the standard I3 identity matrix is the neutral element. For
any A ∈ G, then I3A = AI3 = A. Since 0 ∈ R, we have I3 ∈ G. (That is, we can set x = y = z = 0
in the definiton and see that the identity matrix satisfies the conditions for membership in G.)
4. Inverse element.
We need to find an inverse to a matrix A ∈ G and check if it is in G. We assume that a1, a2, a3 ∈ R.
Without writing out all the calculations, we can show that:1 a1 a3

0 1 a2

0 0 1

−1

=

1 −a1 a1a2 − a3

0 1 −a2

0 0 1


Since −a1,−a2, a1a2 − a3 ∈ R the inverse matrix A−1 ∈ G. Hence the inverse element condition is
satisfied and we can conclude that (G, ·) is a group.

Finally we check if the commutativity property is satisfied to see if the group is also Abelian.
5. Commutativity.
For two matrices A,B ∈ G we want to check if AB = BA. Assuming a1, a2, a3 ∈ R and b1, b2, b3 ∈ R,
and we define the matrices as

A =

1 a1 a3

0 1 a2

0 0 1

 , B =

1 b1 b3
0 1 b2
0 0 1


We have already calculated AB above.

AB =

1 a1 + b1 a3 + a1b2 + b3
0 1 a2 + b2
0 0 1


Calculating BA.

BA =

1 a1 + b1 a3 + a2b1 + b3
0 1 a2 + b2
0 0 1


Note that these matrices are NOT the same due to the difference in the top right element.

a3 + a1b2 + b3 6= a3 + a2b1 + b3

This violates the commutative property, and therefore (G, ·) is NOT an Abelian group.
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2.4 Calculating som matrices - if possible. Recall that a m× n matrix has m rows and n columns.
The columns in the first matrix must correspond to the rows in the second matrix. In that case:
(m× n)× (n× p) = m× p matrix.
a. This is a 3× 2 matrix multiplied by a 3× 3 matrix. Not possible.

b. 1 2 3
4 5 6
7 8 9

1 1 0
0 1 1
1 0 1

 =

1(1) + 2(0) + 3(1) 1(1) + 2(1) + 3(0) 1(0) + 2(1) + 3(1)
4(1) + 5(0) + 6(1) 4(1) + 5(1) + 6(0) 4(0) + 5(1) + 6(1)
7(1) + 8(0) + 9(1) 7(1) + 8(1) + 9(0) 7(0) + 8(1) + 9(1)



=

1 + 0 + 3 1 + 2 + 0 0 + 2 + 3
4 + 0 + 6 4 + 5 + 0 0 + 5 + 6
7 + 0 + 9 7 + 8 + 0 0 + 8 + 9



=

 4 3 5
10 9 11
16 15 17


c. 1 1 0

0 1 1
1 0 1

1 2 3
4 5 6
7 8 9

 =

1(1) + 1(4) + 0(7) 1(2) + 1(5) + 0(8) 1(3) + 1(6) + 0(9)
0(1) + 1(4) + 1(7) 0(2) + 1(5) + 1(8) 0(3) + 1(6) + 1(9)
1(1) + 0(4) + 1(7) 1(2) + 0(5) + 1(8) 1(3) + 0(6) + 1(9)



=

1 + 4 + 0 2 + 5 + 0 3 + 6 + 0
0 + 4 + 7 0 + 5 + 8 0 + 6 + 9
1 + 0 + 7 2 + 0 + 8 3 + 0 + 9



=

 5 7 9
11 13 15
8 10 12


d.

[
1 2 1 2
4 1 −1 −4

]
0 3
1 −1
2 1
5 2

 =

[
1(0) + 2(1) + 1(2) + 2(5) 1(3) + 2(−1) + 1(1) + 2(2)

4(0) + 1(1) + (−1)(2) + (−4)(5) 4(3) + 1(−1) + (−1)(1) + (−4)(2)

]

=

[
0 + 2 + 2 + 10 3 +−2 + 1 + 4
0 + 1− 2− 20 12− 1− 1− 8

]

=

[
14 6
−21 2

]
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e.
0 3
1 −1
2 1
5 2

[1 2 1 2
4 1 −1 −4

]
=


0(1) + 3(4) 0(2) + 3(1) 0(1) + 3(−1) 0(2) + 3(−4)

1(1) + (−1)(4) 1(2) + (−1)(1) 1(1) + (−1)(−1) 1(2) + (−1)(−4)
2(1) + 1(4) 2(2) + 1(1) 2(1) + 1(−1) 2(2) + 1(−4)
5(1) + 2(4) 5(2) + 2(1) 5(1) + 2(−1) 5(2) + 2(−4)



=


0 + 12 0 + 3 0− 3 0− 12
1− 4 2− 1 1 + 1 2 + 4
2 + 4 4 + 1 2− 1 4− 4
5 + 8 10 + 2 5− 2 10− 8



=


12 3 −3 −12
−3 1 2 6
6 5 1 0
13 12 3 2


2.5 Finding the set S of all solutions to the following inhomogeneous linear systems Ax = b. This
is done by augmenting the matrix and using row reduction to find the echelon form.
a.

[A | b] =


1 1 −1 −1

∣∣ 1
2 5 −7 −5

∣∣ −2
2 −1 1 3

∣∣ 4
5 2 −4 2

∣∣ 6

 ∼


1 0 0 2

3

∣∣ 0
0 1 0 − 8

3

∣∣ 0
0 0 1 −1

∣∣ 0
0 0 0 0

∣∣ 1


We have a 0 = 1 contradiction in row four. This means the equation has no solutions, so S = ∅.
b.

[A | b] =


1 −1 0 0 1

∣∣ 3
1 1 0 −3 0

∣∣ 6
2 −1 0 1 −1

∣∣ 5
−1 2 0 −2 −1

∣∣ −1

 ∼


1 0 0 0 −1

∣∣ 3
0 1 0 0 −2

∣∣ 0
0 0 0 1 −1

∣∣ −1
0 0 0 0 0

∣∣ 0


There are no contradictions, so there is a solution set to this equation. The variable x3 is not used
and x5 is a free variable. The solution can be expressed as the following linear equation.

x1 − x5 = 3

x2 − 2x5 = 0

x4 − x5 = −1

x5 = x5

We can check that this is a solution. If we set x5 = 0 and use x3 = 0, we get the vector:

x =


3
0
0
−1
0


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Let’s multiply this to the matrix A and check if we get the solution b.

Ax =


1 −1 0 0 1
1 1 0 −3 0
2 −1 0 1 −1
−1 2 0 −2 −1




3
0
0
−1
0

 =


1(3) +−1(0) + 0(0) + 0(−1) + 1(0)

1(3) + 1(0) + 0(0) + (−3)(−1) + 0(0)
2(3) + (−1)(0) + 0(0) + 1(−1) +−1(0)

(−1)(3) + 2(0) + 0(0) + (−2)(−1) +−1(0)



=


3 + 0 + 0 + 0 + 0
3 + 0 + 0 + 3 + 0
6 + 0 + 0− 1 + 0
−3 + 0 + 0 + 2 + 0



=


3
6
5
−1

 = b

Expressing the solution set as the general solution.

S =

x ∈ R5 : x =


3
0
0
−1
0

+ λ


−1
−2
0
−1
−1

 , λ ∈ R


We verified this for λ = 0. Let us do it again for λ = 1, which gives x2 = [2,−2, 0,−2,−1]T . The
following calculations verify that Ax2 also produces b.

Ax2 =


1 −1 0 0 1
1 1 0 −3 0
2 −1 0 1 −1
−1 2 0 −2 −1




2
−2
0
−2
−1

 =


1(2) + (−1)(−2) + 0(0) + 0(−2) + 1(−1)
1(2) + 1(−2) + 0(0) + (−3)(−2) + 0(−1)

2(2) + (−1)(−2) + 0(0) + 1(−2) + (−1)(−1)
(−1)(2) + 2(−2) + 0(0) + (−2)(−2) + (−1)(−1)



=


2 + 2 + 0 + 0− 1
2− 2 + 0 + 6 + 0
4 + 2 + 0− 2 + 1
−2− 4 + 0 + 4 + 1



=


3
6
5
−1

 = b
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2.6 Finding the solution to the following inhomogeneous linear equation. Start by finding the
reduced echelon form.

Ax =

0 1 0 0 1 0
∣∣ 2

0 0 0 1 1 0
∣∣ −1

0 1 0 0 0 1
∣∣ 1

 ∼
0 1 0 0 0 1

∣∣ 1
0 0 0 1 0 1

∣∣ −2
0 0 0 0 1 −1

∣∣ 1


Both x1 and x3 are irrelevant, and x6 is a free variable. The general solution can be expressed as:

S =


x ∈ R6 : x =


0
1
0
−2
1
0

+ λ


0
1
0
1
−1
−1

 , λ ∈ R


Verifying the solution for λ = 2. This gives us:

x2 =


0
1
0
−2
1
0

+ 2


0
1
0
1
−1
−1

 =


0
1
0
−2
1
0

+


0
2
0
2
−2
−2

 =


0
3
0
0
−1
−2


By multiplying this vector to A we can confirm that we get the solution b.

Ax2 =

0 1 0 0 1 0
0 0 0 1 1 0
0 1 0 0 0 1




0
3
0
0
−1
−2

 =

0(0) + 1(3) + 0(0) + 0(0) + 1(−1) + 0(−2)
0(0) + 0(3) + 0(0) + 1(0) + 1(−1) + 0(−2)
0(0) + 1(3) + 0(0) + 0(0) + 0(−1) + 1(−2)



=

0 + 3 + 0 + 0− 1 + 0
0 + 0 + 0 + 0− 1 + 0
0 + 3 + 0 + 0 + 0− 2



=

 2
−1
1

 = b
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2.7
We are solving Ax = 12x under the condition that x1 + x2 + x3 = 1. Writing out the equations:

6x1 + 4x2 + 3x3 = 12x1

6x1 + 9x3 = 12x2

8x2 = 12x3

By subtracting the righ hand sides, we get the following, equivalent system of linear equations.

−6x1 + 4x2 + 3x3 = 0

6x1 − 12x2 + 9x3 = 0

8x2 − 12x3 = 0

Using this we get the this augmented matrix and find the row reduced echelon form.

[(A− 12I3)|0] =

−6 4 3
∣∣ 0

6 −12 9
∣∣ 0

0 8 −12
∣∣ 0

 ∼
1 0 − 3

2

∣∣ 0
0 1 − 3

2

∣∣ 0
0 0 0

∣∣ 0


So x3 is a free variable, and x1 and x2 are expressed in terms of x3. This is where the extra condition
x1 + x2 + x3 = 1 comes into play. Writing the reduced echelon form as equations, we have:

x1 −
3

2
x3 = 0

x2 −
3

2
x3 = 0

=⇒
x1 =

3

2
x3

x2 =
3

2
x3

Replacing x1 and x2 with our expressions.

x1 + x2 + x3 = 1 ⇒ 3

2
x3 +

3

2
x3 + x3 = 1 ⇒ 4x3 = 1 ⇒ x3 =

1

4

With this we can find the values for x1 and x2.

x1 =
3

2
x3 =

3

2

(
1

4

)
=

3

8
and x2 =

3

2
x3 =

3

2

(
1

4

)
=

3

8

The solution is x = [ 3
8 ,

3
8 ,

1
4 ]T . To verify the solution, we see that 12x = [4.5, 4.5, 3]T . By multiplying

Ax we can check if we get this result. Without showing all the calculations:6 4 3
6 0 9
0 8 0

3/8
3/8
1/4

 =

4.5
4.5
3


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2.8 Finding inverse of matrices. We augment a matrix with the identity matrix and try to find the
row reduced echelon form. If this is not possible, the matrix is not invertible.
a.

[A|I3] =

2 3 4
∣∣ 1 0 0

3 4 5
∣∣ 0 1 0

4 5 6
∣∣ 0 0 1

 ∼
1 0 −1

∣∣ 0 −5 4
0 1 2

∣∣ 0 4 −3
0 0 0

∣∣ 1 −2 1


There is a linear dependence between the third column and the two first columns of the matrix,
hence it is not invertible.
b.

[A|I4] =


1 0 1 0

∣∣ 1 0 0 0
0 1 1 0

∣∣ 0 1 0 0
1 1 0 1

∣∣ 0 0 1 0
1 1 1 0

∣∣ 0 0 0 1

 ∼


1 0 0 0
∣∣ 0 −1 0 1

0 1 0 0
∣∣ −1 0 0 1

0 0 1 0
∣∣ 1 1 0 −1

0 0 0 1
∣∣ 1 1 1 −2

 = [I4|A−1]

In this case we were able to find the row-reduced echelon form, which means the matrix is invertible.
By multiplying AA−1 we should get the identity matrix I4. Calculations to verify:

AA−1 =


1 0 1 0
0 1 1 0
1 1 0 1
1 1 1 0




0 −1 0 1
−1 0 0 1
1 1 0 −1
1 1 1 −2

 =


1(0) + 0(−1) + 1(1) + 0(1) 1(−1) + 0(0) + 1(1) + 0(1) 1(0) + 0(0) + 1(0) + 0(1) 1(1) + 0(1) + 1(−1) + 0(−2)
0(0) + 1(−1) + 1(1) + 0(1) 0(−1) + 1(0) + 1(1) + 0(1) 0(0) + 1(0) + 1(0) + 0(1) 0(1) + 1(1) + 1(−1) + 0(−2)
1(0) + 1(−1) + 0(1) + 1(1) 1(−1) + 1(0) + 0(1) + 1(1) 1(0) + 1(0) + 0(0) + 1(1) 1(1) + 1(1) + 0(−1) + 1(−2)
1(0) + 1(−1) + 1(1) + 0(1) 1(−1) + 1(0) + 1(1) + 0(1) 1(0) + 1(0) + 1(0) + 0(1) 1(1) + 1(1) + 1(−1) + 0(−2)



=


0 + 0 + 1 + 0 −1 + 0 + 1 + 0 0 + 0 + 0 + 0 1 + 0− 1 + 0
0− 1 + 1 + 0 0 + 0 + 1 + 0 0 + 0 + 0 + 0 0 + 1− 1 + 0
0− 1 + 0 + 1 −1 + 0 + 0 + 1 0 + 0 + 0 + 1 1 + 1 + 0− 2
0− 1 + 1 + 0 −1 + 0 + 1 + 0 0 + 0 + 0 + 0 1 + 1− 1 + 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I4

Phew! The result is the identity matrix I4.
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2.9 Determining whether four proposed sets are subspaces of R3. There are two properties that
needs to be checked.
1. The set contains the null vector 0 = [0, 0, 0]T .
2. The set is closed under scaling (multiplying with a constant) and addition.
A subset is not a subspace if we can find a single counterexample to any of these properties.
a.

The set A is defined as
A = {λ, λ+ µ3, λ− µ3|λ, µ ∈ R}

Showing that 0 ∈ A is easy as it is true when λ = 0 and µ = 0.
Assuming some constant c ∈ R and x ∈ A with a, b ∈ R such that x = [a, a + b3, a − b3]. We

want to check if cx ∈ A. Let’s also define q := c
1
3 (if c is negative, this is the real root).

cx = c

 a
a+ b3

a− b3

 =

 ca
ca+ cb3

ca− cb3

 =

 ca
ca+ (qb)3

ca− (qb)3

 =

 λ
λ+ µ3

λ− µ3


when λ := ca and µ := qb. This shows that A is closed under scaling. Next we assume we have to
points in A, given by x = [a, a + b3, a − b3] and y = [x, x + y3, x − y3] for a, b, x, y ∈ R. Adding
them together.

x + y =

 a
a+ b3

a− b3

+

 x
x+ y3

x− y3

 =

 (a+ x)
(a+ x) + (b3 + y3)
(a+ x)− (b3 + y3)

 =

 λ
λ+ µ3

λ− µ3


when λ := (a + x) and µ3 := (b3 + y3). With the properties verified, we can conclude that A is a
subspace.
b.

Checking this set:
B = {λ2,−λ2, 0|λ ∈ R}

When λ = 0 we have 0 ∈ B.
But B is not closed under scaling. A counterexample is when z ∈ B with λ = 2 and c = −1. In
this case:

cz = (−1)

 (2)2

−(2)2

0

 = (−1)

 4
−4
0

 =

−4
4
0


There is no λ ∈ R we can choose such that λ2 = −4 or −λ2 = 4. We would need complex numbers
which violates the condition that λ ∈ R. Hence B is NOT a subspace.
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c.

We have some fixed value γ ∈ R. The set is defined as:

C = {ξ1, ξ2, ξ3 | ξ1 − 2ξ2 + 3ξ3 = γ}

If γ 6= 0, then 0 6∈ C which means this can only be a subspace when γ = 0.
Assuming that γ = 0 we can check if it satisfies closure under scaling/addition. Assuming x ∈ C

where x = [a1, a2, a3] and a1 − 2a2 + 3a3 = 0 and c ∈ R and c 6= 0.

cx =

ca1

ca2

ca3


Checking the condition for membership in C.

a1 − 2a2 + 3a3 = 0 ⇒ c(a1 − 2a2 + 3a3) = c(0) ⇒ ca1 − 2ca2 + 3ca3 = 0

This shows the condition is met, so C is closed under scaling.
Introducing y = [b1, b2, b3] and assuming b1 − 2b2 + 3b3 = 0 we can add x with y and check if

it’s still a member of C.

x + y =

a1

a2

a3

+

b1b2
b3

 =

a1 + b1
a2 + b2
a3 + b3


We need to check if this satisfies the condition for membership in C.

(a1 + b1)− 2(a2 + b2) + 3(a3 + b3) =

a1 + b1 − 2a2 − 2b2 + 3a3 + 3b3 =

(a1 − 2a2 + 3a3) + (b1 − 2b2 + 3b3) = 0 + 0 = 0

(In the above step we used the assumptions we made earlier on ai and bi). This means:

(a1 + b1)− 2(a2 + b2) + 3(a3 + b3) = 0

This shows that C is closed under addition which means that C is a subspace if γ = 0.
d.

The following set:
D = {(ξ1, ξ2, ξ3) | ξ2 ∈ Z}

is NOT a subspace since it is not closed under scaling. Counterexample: take the element y =
[2, 1, 2]T ∈ D and scale with c = 1.1. Then 1.1y = [2.2, 1.1, 2.2]T and since 1.1 6∈ Z it is not closed
under scaling and therefore NOT a subspace.
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2.10. Finding out if the following vectors are linearly independent.
a.

We collect the terms in a matrix and find the reduced echelon form to answer the question.

[x1 x2 x3] =

 2 1 3
−1 1 −3
3 −2 8

 ∼
1 0 2

0 1 −1
0 0 0


As we can see, the third column depends on the first two: x3 = 2x1 − x2. Verifying:

2x1 − x2 = 2

 2
−1
3

−
 1

1
−2

 =

 4
−2
6

−
 1

1
−2

 =

 4− 1
−2− 1
6 + 2

 =

 3
−3
8

 = x3

b.

Same procedure.

[x1 x2 x3] =


1 1 1
2 1 0
1 0 0
0 1 1
0 1 1

 ∼


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


In this case the rows are linearly independent (not surprising since there are five rows).

2.11. We write out the augmented matrix [x1 x2 x3|y] and find the row reduced echelon form to
see how y can be written as a linear combination of the other columns.

[x1 x2 x3|y] =

1 1 2
∣∣ 1

1 2 −1
∣∣ −2

1 3 1
∣∣ 5

 ∼
1 0 0

∣∣ −6
0 1 0

∣∣ 3
0 0 1

∣∣ 2


So, y = −6x1 + 3x2 + 2x3. Verifying:

−6x1 + 3x2 + 2x3 = −6

1
1
1

+ 3

1
2
3

+ 2

 2
−1
1

 =

−6
−6
−6

+

3
6
9

+

 4
−2
2



=

−6 + 3 + 4
−6 + 6− 2
−6 + 9 + 2

 =

 1
−2
5

 = y
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2.12. Finding a basis of U1 ∩ U2 for two subspaces U1, U2 ⊂ R4.
Let’s first consider a simplified example where U1 and U2 are subspaces of R3 and that they

are both planes running through the origin. Their intersection would be a line going through the
origin. Here is an example (code enclosed in the Appendix):

In this example we have the following surfaces:

(I) z1 = 6x+ 3y

(II) z2 = −2x+ 5y

We can find a parametric line that describes the intersection with some algebra. Since we have
two equations and three variables, we set t := x and solve the equation for y and z in terms of t.

(II) z = −2t+ 5y ⇒ 2t = 5y − z (I)⇒ 2t = 5y − 6t− 3y ⇒ 8t = 2y ⇒ y = 4t

Replacing the value for y into (I):

(I) z = 6t+ 3y ⇒ z = 6t+ 3(4t) ⇒ z = 6t+ 12t ⇒ z = 18t

So, expressed in terms of t, the the parametric line is given as: t
4t
18t

 = t

 1
4
18


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Here is a plot showing that this parametric line is indeed the intersection between the planes.
(Code enclosed in Appendix).

In other words, the vector we found spans this exact line. Let us solve it using just the bases
which is the intention of this exercise. So how do we determine the span from a plane? Any linearly
independent vectors in a subspace will be a span, and for our planes we just need to find two vectors
(because they are 2D planes). In the case of equation (I), we can simply input x = 2, y = 1 and
x = 1, y = 2 to calculate z and find two independent vectors.

z = 6(2) + 3(1) = 12 + 3 = 15, z = 6(1) + 3(2) = 6 + 6 = 12

We can do the same for (II).

z = −2(2) + 5(1) = −4 + 5 = 1, z = −2(1) + 5(2) = −2 + 10 = 8

This gives us the span for each plane.

U1 = span{u1,u2} = span


 2

1
15

 ,
 1

2
12

 , U2 = span{w1,w2} = span


2

1
1

 ,
1

2
8


Now to find the span of U1 ∩U2. Assume that we have some v ∈ U1 ∩U2. By properties of a basis,
we can write this as v = au1 + bu2 and v = cw1 + dw2 for some a, b, c, d ∈ R. Since v− v = 0, we
get the following equation:

v − v = au1 + bu2 − cw1 − dw2 = 0
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Writing this out as an augmented matrix and finding the row reduced echelon form, we can find
the unknown values a, b, c, d. 2 1 −2 −1

∣∣ 0
1 2 −1 −2

∣∣ 0
15 12 −1 −8

∣∣ 0

 ∼
1 0 0 2

7

∣∣ 0
0 1 0 −1

∣∣ 0
0 0 1 2

7

∣∣ 0


Important note. Since U1 and U2 are 2-dimensional planes, dim(U1) = 2 and dim(U2) = 2. The last
matrix has rank 3, so dim(U1 +U2) = 3. From the following formula we can calculate dim(U1∩U2):

dim(U1 ∩ U2) = dim(U1) + dim(U2)− dim(U1 + U2) = 2 + 2− 3 = 1.

This verifies that the intersection is spanned by 1 vector, i.e. it is a line.
Above, d is a free variable. Writing the solution as a linear equation.

a = −2

7
d

b = d

c = −2

7
d

We can make the special choice d = 7
3 , which gives us:

a = −2

7

(
7

3

)
= −2

3

b =
7

3

c = −2

7

(
7

3

)
= −2

3

Now that we know a, b, c, d we can calculate v.

v = au1 + bu2 = −2

3

 2
1
15

+
7

3

 1
2
12

 =

− 4
3
− 2

3
−10

+

 7
3
14
3

28

 =

 1
4
18


Not necessary, but we can also calculate v from U2.

v = cw1 + dw2 = −2

3

2
1
1

+
7

3

1
2
8

 =

− 4
3
− 2

3
− 2

3

+

 7
3
14
3
56
3

 =

 1
4
18


This is corresponds to the parametrized line that we found earlier. We have now shown that this
is the basis of U1 ∩ U2.

U1 ∩ U2 = span


 1

4
18


(We selected d = 7

3 to get the same basis vector that we found earlier. Any other value for d would
simply have given a scaled version of the same vector, which would ultimately make the same line
as in the plot).
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So, now to the actual exercise! We have subspaces U1 ⊂ R4 and U2 ⊂ R4 and the spans are given
by:

U1 = span




1
1
−3
1

 ,


2
−1
0
−1

 ,

−1
1
−1
1


 , U2 = span



−1
−2
2
1

 ,


2
−2
0
0

 ,

−3
6
−2
−1




which we will simplify as U1 = span{u1,u2,u3} and U2 = span{w1,w2,w3}. We will determine a
basis for U1 ∩ U2. As in the simplified example above, we assume there is some point v ∈ U1 ∩ U2,
so for a, b, c, d, e, f ∈ R we can write:

v = au1 + bu2 + cu3

and
v = dw1 + ew2 + fw3

By taking v − v we get a homogeneous equation which we can express as the augmented matrix
from which we get the reduced echelon form.

1 2 −1 1 −2 3
∣∣ 0

1 −1 1 2 2 −6
∣∣ 0

−3 0 −1 −2 0 2
∣∣ 0

1 −1 1 −1 0 1
∣∣ 0

 ∼


1 0 1
3 0 − 4

9
8
9

∣∣ 0
0 1 − 2

3 0 − 10
9

20
9

∣∣ 0
0 0 0 1 2

3 − 7
3

∣∣ 0
0 0 0 0 0 0

∣∣ 0

 (*)

The free variables are c, d and f . The equations are:

a = −1

3
c+

4

9
e− 8

9
f

b =
2

3
c+

10

9
e− 20

9
f

c = c

d = −2

3
e+

7

3
f

e = e

f = f

Setting c = e = f = 9, we get:

a = −1

3
(9) +

4

9
(9)− 8

9
(9) = −3 + 4− 8 = −7

b =
2

3
(9) +

10

9
(9)− 20

9
(9) = 6 + 10− 20 = −4

c = 9

d = −2

3
(9) +

7

3
(9) = −6 + 21 = 15

e = 9

f = 9
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Now we can calculate v.

v = au1 + bu2 + cu3 = (−7)


1
1
−3
1

+ (−4)


2
−1
0
−1

+ 9


−1
1
−1
1



=


−7
−7
21
−7

+


−8
4
0
4

+


−9
9
−9
9



=


−7− 8− 9
−7 + 4 + 9
21 + 0− 9
−7 + 4 + 9



=


−24

6
12
6



= 6


−4
1
2
1


According to these calculations,

U1 ∩ U2 = span



−4
1
2
1




Not showing the calculations, but as we should have checked earlier: dim(U1) = 2 and dim(U2) = 2.
From (∗) above we see that dim(U1) + dim(U2) = 3 since the augmented matrix has rank 3.

dim(U1 ∩ U2) = dim(U1) + dim(U2)− dim(U1 + U2) = 2 + 2− 3 = 1.

This shows that the intersection is a line. (Would have simplified the calculations a bit, but whaddya
gonna do?).
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2.13. The subspace Ui is the solution to the homogeneous equation systems Aix = 0 for i = 1, 2
where

A1 =


1 0 1
1 −2 −1
2 1 3
1 0 1

 , A2 =


3 −3 0
1 2 3
7 −5 2
3 −1 2


a. and b.

To find the solution to the null space (or kernel) we will use the ”Minus-1” trick from section 2.3.3.
First we find the row reduced echelon form.

A1 =


1 0 1
1 −2 −1
2 1 3
1 0 1

 ∼


1 0 1
0 1 1
0 0 0
0 0 0


This is easily verified since the third column is just the sum of the first two columns. By the

’Minus-1’ trick, we extend the matrix into the augmented, square matrix
∼
A1 and we insert a ’-1’

beneath the two 1s, marked in bold text and on the last column, so the diagonal contains either 1
or −1. 

1 0 1 0
0 1 1 0
0 0 −1 0
0 0 0 −1


All the rows with −1 on the diagonal will be the span of the solution space U1. (Both vectors in
the span will give 0 when multiplied with A1.) This is also a basis for U1 and we can see that
dim(U1) = 2.

span(U1) =




1
1
−1
0

 ,


0
0
0
−1




We repeat the same procedure for A2.

A2 =


3 −3 0
1 2 3
7 −5 2
3 −1 2

 ∼


1 0 1
0 1 1
0 0 0
0 0 0


Again, the third column is the sum of the first two columns which is easily seen (at least in
retrospect!). Now, we have the exact same row reduced echelon form as earlier, and the ”Minus-1”
trick will yield the same exact span/basis. We can note that dim(U2) = 2.

span(U2) =




1
1
−1
0

 ,


0
0
0
−1




c.

The null spaces for A1 and A2 are spanned by the same vectors. In other words they are completely
overlapping planes. Hence, the basis for U1 ∩ U2 is the same as for U1 and U2.
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2.14.
a.

To find the dimensions we count the pivot columns in rref(Ai). The matrices here are the same
ones from the previous exercise.

A1 =


1 0 1
1 −2 −1
2 1 3
1 0 1

 ∼


1 0 1
0 1 1
0 0 0
0 0 0


There are two pivot columns, so dim(U1) = 2.

A2 =


3 −3 0
1 2 3
7 −5 2
3 −1 2

 ∼


1 0 1
0 1 1
0 0 0
0 0 0


There are two pivot columns, so dim(U2) = 2.
b.

To determine the basis we simply have to find the pivot columns, which we saw are the first two
columns. The basis of U1 is: 


1
1
2
1

 ,


0
−2
1
0


 = {u1,u2}

It’s exactly the same for U2. Its basis is:


3
1
7
3

 ,

−3
2
−5
−1


 = {w1,w2}

c.

First we calculate the dimension of U1 ∩ U2. We need to find the dimension of U1 + U2 first.

[A1 A2] =


1 0 1 3 −3 0
1 −2 −1 1 2 3
2 1 3 7 −5 2
1 0 1 3 −1 2

 ∼


1 0 1 3 −3 0
0 1 1 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0


There are three pivot columns so dim(U1 +U2) = 3. We can now calculate the dimension of U1∩U2.

dim(U1 ∩ U2) = dim(U1) + dim(U2)− dim(U1 + U2) = 2 + 2− 3 = 1

Solving this the same way as earlier. Assuming v ∈ U1 ∩ U2, then, for a, b, c, d ∈ R we have

v = au1 + bu2

v = cw1 + dw2

21



From v − v we get au1 + bu2 − cw1 − dw2 = 0 and can set up the following matrix in order to
solve a, b, c, d. (NOTE: These are supposed to be augmented matrices).

1 0 −3 3
∣∣ 0

1 −2 −1 −2
∣∣ 0

2 1 −7 5
∣∣ 0

1 0 −3 1
∣∣ 0

 ∼


1 0 3 0
∣∣ 0

0 1 −1 0
∣∣ 0

0 0 0 1
∣∣ 0

0 0 0 0
∣∣ 0


Writing the equation, and setting the free variable c = 1.

a− 3c = 0

b− c = 0

c = c

d = 0

=⇒

a = 3

b = 1

c = 1

d = 0

Since d = 0, we get from U2:

v = cw1 + dw2 = w1 + 0 =


3
1
7
3


We can also verify with calculating from U1.

v = au1 + bu2 = 3u1 + u2 = 3


1
1
2
1

+


0
−2
1
0

 =


3
3
6
3

+


0
−2
1
0

 =


3
1
7
3


The basis for U1 ∩ U2 is therefore: 


3
1
7
3



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2.15. We have the following sets:

F = {(x, y, z) ∈ R3 |x+ y − z = 0}

G = {(a− b, a+ b, a− 3b) ∈ R3 | a, b ∈ R}

a.

Showing that F is a subspace of R3. It is obvious that 0 ∈ F , so we just need to verify that it is
closed under scaling and addition. Assume c ∈ R and (x, y, z) ∈ F which means x + y − z = 0.
Then:

cx+ cy − cz = c(x+ y − z) = c(0) = 0 ⇒ cx+ cy + cz = 0

so (cx, cy, cz) ∈ F . Next we assume (x1, y1, z1), (x2, y2, z2) ∈ F so xi + yi − zi = 0 for i = 1, 2.
When adding them we get (x1 + x2, y1 + y2, z1 + z2). Verifying that this is in F :

(x1 + x2) + (y1 + y2)− (z1 + z2) = (x1 + y1 − z1) + (x2 + y2 − z2) = 0 + 0 = 0

Hence,
(x1 + x2) + (y1 + y2)− (z1 + z2) = 0

which shows F is closed under addition and therefore a subspace of R3.
Next we show that G is a subspace. By selecting a = 0 and b = 0, we get (0, 0, 0), so 0 ∈ G.

Next we show scaling. For some c ∈ R, and (a′ − b′, a′ + b′, a′ − 3b′) ∈ G, the scaled vector is
(ca′ − cb′, ca′ + cb′, ca′ − 3cb′). We define a := ca′ ∈ R and b := cb′ ∈ R so we have (a − b, a +
b, a − 3b) which is obviously in G. Finally we show that G is closed under addition. Assuming
(a1 − b1, a1 + b1, a1 − 3b1) ∈ G and (a2 − b2, a2 + b2, a2 − 3b2) ∈ G. By adding them: a1 − b1

a1 + b1
a1 − 3b1

+

 a2 − b2
a2 + b2
a2 − 3b2

 =

 a1 − b1 + a2 − b2
a1 + b1 + a2 + b2
a1 − 3b1 + a2 − 3b2

 =

 (a1 + a2)− (b1 + b2)
(a1 + a2) + (b1 + b2)
(a1 + a2)− 3(b1 + b2)

 =

 a3 − b3
a3 + b3
a3 − 3b3


where we defined a3 := a1 + a2 and b3 := b1 + b2 which are real numbers. This shows G is closed
under addition and that G is a subspace.
b.

We will find the intersection F ∩B. This set is defined as the set where both conditions are true:

F ∩G =


 a− ba+ b
a− 3b

 ∈ R3
∣∣∣ (a− b)

x
+ (a+ b)

y
− (a− 3b)

z
= 0 and a, b ∈ R


(Marking the new conditions that are x, y, z in F ). Simplifying the expression:

(a− b) + (a+ b)− (a− 3b) = 0 ⇒ a+ 3b = 0 ⇒ a = −3b

Replacing a = −3b into the vectors: a− ba+ b
a− 3b

 =

 −3b− b
−3b+ b
−3b− 3b

 =

−4b
−2b
−6b

 = −2b

2
1
3

 = w

2
1
3


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Since b ∈ R is any real number, we can use w ∈ R defined as w := −2b instead to get a scaled down
version. So, in conclusion:

F ∩G =

w
2

1
3

 ∈ R3
∣∣∣ w ∈ R


As a verification we can see that [2, 1, 3]T ∈ F since 2 + 1− 3 = 0 and [2, 1, 3]T ∈ G when a = 3/2
and b = −1/2 which shows that both conditions are satisfied.
c.

Finding a basis for F . The condition is that x + y − z = 0 which means z = x + y which is easily
plottable as a surface (code example in Appendix), with axes included:

To find a basis we just need any linearly independent vectors that span the set. In this case we
have a 2D-plane so we just need two vectors. If we set in x = 2, y = 1 and then x = 1, y = 2 we get
z = 3, but we also get a basis. 

2
1
3

 ,
1

2
3

 = {u1,u2}

To find a basis for G note that for a, b ∈ R we have the following set of equalities: a− ba+ b
a− 3b

 =

aa
a

+

 −bb
−3b

 = a

1
1
1

+ b

−1
1
−3


so any member of G can be expressed as aw1 + bw2, but that is exactly the definition of a basis, so
we can just read it off. This means the following is the basis for G, which is also a 2-dimensional
plane: 

1
1
1

 ,
−1

1
−3

 = {w1,w2}
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Now to find a basis for F ∩G. First we make a few observations: dim(F ) = 2, dim(G) = 2. To
find the dimensions of F +G we count the pivot columns of a matrix with the bases:2 1 1 −1

1 2 1 1
3 3 1 −3

 ∼
1 0 0 −2

0 1 0 0
0 0 1 3


So, dim(F +G) = 3. This means that dim(F ∩G) = 2 + 2− 3 = 1, i.e. it is a line in 3d-space.

Assuming v ∈ F ∩G we can write it as the following (assuming x1, x2, x3, x4 ∈ R):

v = x1u1 + x2u2

v = x3w1 + x4w2

And to find the parameters xi we solve the equation: x1u1 + x2u2 − x3w1 − x4w2 = 0.2 1 −1 1
∣∣ 0

1 2 −1 −1
∣∣ 0

3 3 −1 3
∣∣ 0

 ∼
1 0 0 2

∣∣ 0
0 1 0 0

∣∣ 0
0 0 1 3

∣∣ 0


Written as equations, and setting the free variable x4 = −1/2:

x1 + 2x4 = 0

x2 = 0

x3 + 3x4 = 0

x4 = x4

=⇒

x1 = −2x4 = −2(−1

2
)

x2 = 0

x3 = −3x4 = −3(−1

2
)

x4 = −1

2

=⇒

x1 = 1

x2 = 0

x3 =
3

2

x4 = −1

2

Calculating v from F :

v = (1)u1 + (0)u2 = u1 + 0 =

2
1
3


Calculating v from G:

v = x3w1 + x4w2 =

(
3

2

)1
1
1

+

(
−1

2

)−1
1
−3

 =

 3
2
3
2
3
2

+

 1
2
− 1

2
3
2

 =

 3
2 + 1

2
3
2 −

1
2

3
2 + 3

2

 =

2
1
3


We get the same basis as we found in (b).
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2.16. Recalling the definition of a linear mapping/homomorphism. A function Φ : V →W is linear
if for any x,y ∈ V and any a, b ∈ R:

Φ(ax + by) = aΦ(x) + bΦ(y).

a.

Checking if Φ : L1([a, b])→ R is linear, when:

Φ(f) =

∫ b

a

f(x)dx

Yes, this is linear by standard properties of the integral. Assuming f, g ∈ L1([a, b]) and c1, c2 ∈ R.
Then:

Φ(c1f + c2g) =

∫ b

a

c1 · f(x) + c2 · g(x)dx = c1

∫ b

a

f(x)dx+ c2

∫ b

a

g(x)dx = c1Φ(f) + c2Φ(g)

b.

Checking if C1 → C0 is linear, when:

Φ(f) =
d

dx
f = f ′

Yes, this is linear by standard properties of the derivative. Assuming f, g ∈ C1 and c1, c2 ∈ R.
Then:

Φ(c1f + c2g) =
d

dx

(
c1f(x) + c2g(x)

)
= c1

d

dx
f(x) + c2

d

dx
g(x) = c1Φ(f) + c2Φ(g)

c.

Checking the function Φ : R→ R where Φ(x) = cos(x). This is NOT a linear function.
Counterexample:

cos(2 · 2 + 2 · 2) = cos(4 + 4) = cos(8) ≈ −0.1455

2 cos(2) + 2 cos(2) = 4 cos(2) ≈ −1.6646

(It breaks both the properties... but that doesn’t really matter. It is not a linear mapping).
d.

Checking the matrix operation Φ : R3 → R2 where

Φ(x) =

[
1 2 3
1 4 3

]x1

x2

x3

 = Ax.

Assuming x1,x2 ∈ R3 and c1, c2 ∈ R,

Φ(c1x1 + c2x2) = A(c1x1 + c2x2) = c1Ax1 + c2Ax2 = c1Φ(x1) + c2Φ(x2)

which shows that Φ is a linear mapping. (We used that matrices are distributive over other matri-
ces/vectors. Property 2.19b from the text). Note that this actually proves that ALL matrices are
linear mappings.
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e.

Assuming θ ∈ [0, 2π) we want to check if the following rotation matrix is a linear mapping. For
Φ : R2 → R2 given by

Φ(x) = Ax =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
x1

x2

]
Assuming x1,x2 ∈ R2 and c1, c2 ∈ R,

Φ(c1x1 + c2x2) = A(c1x1 + c2x2) = c1Ax1 + c2Ax2 = c1Φ(x1) + c2Φ(x2)

This function is a linear mapping. The same argument can be used for all matrices.

2.17. We have a linear mapping Φ : R3 → R4 given by:

Φ

x1

x2

x3

 =


3x1 + 2x2 + x3

x1 + x2 + x3

x1 − 3x2

2x1 + 3x2 + x3


• Finding the transformation matrix AΦ. We can simply read it from the matrix above.

AΦ =


3 2 1
1 1 1
1 −3 0
2 3 1


This text book explains transformation matrices quite poorly, but to see that it is correct we can
borrow an example from another Linear Algebra book. Here it states that the function T (x) = Ax
which for us corresponds to Φ(x) = AΦx, and we can see the matrix directly from the results.

• The rank is determined by counting the pivots in rref(AΦ). This shows that rank(()AΦ) = 3.
3 2 1
1 1 1
1 −3 0
2 3 1

 ∼


1 0 0
0 1 0
0 0 1
0 0 0


• By the rank-nullity theorem we know that: rank(()AΦ) = dim(Im(AΦ)) = 3 and,

dim(R3) = rank(()AΦ) + dim(ker(AΦ)) = 3 + 0 ⇒ dim(ker(AΦ)) = 0

(Using AΦ and Φ interchangeably, but they basically mean the same thing.)
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2.18. A bunch of terms:
• Automorphism: the function f : V → V is linear and bijective.
• Linear: for any x,y ∈ V and any a, b ∈ R, f(ax + by) = af(x) + bf(y).
• Bijective: f is injective and surjective. :)
• Injective: ∀x,y ∈ V : f(x) = f(y)⇒ x = y
• Surjective: f(V ) = V , i.e. the whole V domain is mapped to V and ’fills it out’.
• Define idV : V → V as the identity mapping idV (x) = x for x ∈ V .

This image can be helpful. (The yellow subset in W is V for this exercise).

Let E be a vector space. Let f and g be two automorphisms on E such that f ◦ g = idE (i.e.
f ◦ g is the identity mapping idE). Show that ker(f) = ker(g ◦ f), Im(g) = Im(g ◦ f) and that
ker(f) ∩ Im(g) = {0E}.

Claim: ker(f) = ker(g ◦ f)
Proof.
⊂). Assume x is some random point in ker(f), which means f(x) = 0E . Then g ◦ f(x) =
g(f(x)) = g(0E) = 0E since the null point is always in the kernel, so x ∈ ker(g ◦ f), which proves
ker(f) ⊂ ker(g ◦ f).
⊃). Now assume x ∈ ker(g ◦ f) so g(f(x)) = 0E . Since the null point is always in the kernel,
g(0E) = 0E . By the injective property of g, g(f(x)) = g(0E) =⇒ f(x) = 0E which means
x ∈ ker(f), so ker(g ◦ f) ⊂ ker(f).
By inclusion both ways, we have proved that ker(f) = ker(g ◦ f). �

Claim: Im(g) = Im(g ◦ f)
Proof.
Since g is surjective, g(E) = E. Since f is surjective, f(E) = E and by the surjective property of
g again we have g(f(E)) = g(E) = E. So, Im(g) = E = Im(g ◦ f). �

Claim: ker(f) ∩ Im(g) = {0E}
Proof.
By the surjective property of g, Im(g) = E. Now assume some random x ∈ ker(f), then f(x) = 0E .
Since the null point is in the kernel, f(0E) = 0E which means f(x) = f(0E). By the injective
property, f(x) = f(0E) =⇒ x = 0E . From this we can conclude that ker(f) = {0E} This means
ker(f) ∩ Im(g) = {0E} ∩ E = {0E}. �
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2.19. We have an endomorphism (linear function which maps a domain back into itself)
Φ : R3 → R3 with the transformation matrix with the corresponding RREF.

AΦ =

1 1 0
1 −1 0
1 1 1

 ∼
1 0 0

0 1 0
0 0 1


a.

All columns are pivot-columns, so the rank of the matrix is 3. The dimension of R3 is of course 3,
which means the null space must have dimension 0, i.e. it is only a single point: the null point.

ker(Φ) = {0}

Since there are three linearly independent columns, they span a 3d space, and since this is in R3,
they span the entire set.

Im(Φ) = R3

b.

With the following ordered basis, we will determine the transformation matrix
∼
AΦ.

B =

1
1
1

 ,
1

2
1

 ,
1

0
0


Just some clarifications: if we have a point in R3, the matrix will map it to some other point. As
an example, consider the point [2, 3, 1]T :1 1 0

1 −1 0
1 1 1

2
3
1

 =

 1(2) + 1(3) + 0(1)
1(2) + (−1)(3) + 0(1)

1(2) + 1(3) + 1(1)



=

 2 + 3 + 0
2 + (−3) + 0

2 + 3 + 1



=

 5
−1
6


The vector [5,−1, 6]T is the same vector as [2, 3, 1]T but expressed in a different basis; the standard
basis.
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In order to understand better, let us consider a simpler example in R2. With the standard basis
{e1, e2} = {[1, 0]T , [0, 1]T } we have the vector [1, 2]T . This vector can be expressed in terms of the
standard basis like this:

x = α1e1 + α2e2 = 1

[
1
0

]
+ 2

[
0
1

]
=

[
1
2

]
The values α1 = 1 and α2 = 2 are called coordinates of x with respect to {e1, e2}.

Now, let us introduce a new, ordered basis.

Q =

([
1
−1

]
,

[
1
0

])
= (q1,q2)

Let us say we have a coordinate y = [2, 3]T with respect to the basis Q. What is y in the standard
basis? The basis Q gives us a recipe for the vector:

y = α1q1 + α2q2 = 2

[
1
−1

]
+ 3

[
1
0

]
=

[
2 + 3
−2 + 0

]
=

[
5
−2

]
If we want to go the other way, from a point the standard basis to a point with coordinates relative
to Q, we set up a matrix equation like this, using [5,−2]T as an example:

α1q1 + α2q2 =

[
5
−2

]
=⇒ [q1q2]

[
α1

α2

]
=

[
5
−2

]
=⇒

[
1 1
−1 0

] [
α1

α2

]
=

[
5
−2

]
The matrix in the last step is made up of the basis columns, so the columns are linearly independent,
and the matrix is invertible. The inverse matrix is:[

1 1
−1 0

]−1

=

[
0 −1
1 1

]
We can use this to solve the matrix equation (by multiplying it to the left hand side of the equation).
As the following calculations shows, the solution gives us back the coordinates [2, 3]T with respect
to Q, the opposite of what we found above:[

1 1
−1 0

] [
α1

α2

]
=

[
5
−2

]
[
α1

α2

]
=

[
0 −1
1 1

] [
5
−2

]

=

[
0(5) + (−1)(−2)

1(5) + 1(−2)

]

=

[
0 + 2
5− 2

]

=

[
2
3

]
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As we have seen, the matrix defined by the columns of the basis Q gives a mapping from coor-
dinates under Q to standard coordinates. The inverse matrix gives a mapping from the standard
coordinates to Q. To borrow some notation from another text book, we call this matrix the ’change-
of-coordinate’ matrix P and denote the relevant basis as a subscript.

[q1 q2] = PQ =

[
1 1
−1 0

]
: maps from a Q vector to a standard vector

P−1
Q =

[
0 −1
1 1

]
: maps from a standard vector to a Q vector

Now to look at translation between two vector spaces with non-standard bases. Continuing with
the basis Q, we introduce the basis R:

R =

([
2
−1

]
,

[
1
−1

])
= (r1, r2)

As we have seen above, the change-of-coordinate matrix from R to standard basis is:

PR = [r1 r2] =

[
2 1
−1 −1

]
The change-of-coordinate from standard basis to R basis is the inverse matrix:

P−1
R =

[
1 1
−1 −2

]
In order to take a vector inR and express it inQ we first translate it fromR to standard coordinates,
and then into Q. (Borrowing some additional notation from another book where we explicitly state
the basis of a vector):

[x]Q = P−1
Q PR[x]R

This means the translation matrix between R and Q is this:

P
Q←R

= P−1
Q PR =

[
0 −1
1 1

] [
2 1
−1 −1

]
=

[
1 1
1 0

]
The opposite translation:

P
R←Q

= P
Q←R

−1 =

[
0 1
1 −1

]
Or, when calculated explicitly with matrices.

P
R←Q

= P−1
R PQ =

[
1 1
−1 −2

] [
1 1
−1 0

]
=

[
0 1
1 −1

]
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Back to the exercise. We have the transformation matrix AΦ which translates from the standard
basis to some unspecified basis, which we will call D. In our borrowed notation, this becomes P−1

D .

AΦ = P−1
D =

1 1 0
1 −1 0
1 1 1

 =⇒ PD =

0.5 0.5 0
0.5 −0.5 0
−1 0 1


We are asked to find the transformation matrix

∼
AΦ wrt. to the provided basis:

B =

1
1
1

 ,
1

2
1

 ,
1

0
0


As seen, the basis makes up the columns that map from B to the standard basis.

PB =

1 1 1
1 2 0
1 1 0

 =⇒ P−1
B =

0 −1 2
0 1 −1
1 0 −1


They want us to find the matrix that maps from D to B. Going via the standard basis, we need a
mapping from standard basis and from the standard basis to B.

[x]D
PD→ x

P−1
B→ [x]B

Note the correct order of operation:

[x]B = P−1
B PD[x]D

According to my reasoning, the resulting change of basis matrix should be:

∼
AΦ = P−1

B PD =

0 −1 2
0 1 −1
1 0 −1

0.5 0.5 0
0.5 −0.5 0
−1 0 1



=

0(0.5) + (−1)(0.5) + 2(−1) 0(0.5) + (−1)(−0.5) + 2(0) 0(0) + (−1)(0) + 2(1)
0(0.5) + 1(0.5) + (−1)(−1) 0(0.5) + 1(−0.5) + (−1)(0) 0(0) + 1(0) + (−1)(1)
1(0.5) + 0(0.5) + (−1)(−1) 1(0.5) + 0(−0.5) + (−1)(0) 1(0) + 0(0) + (−1)(1)



=

0− 0.5− 2 0 + 0.5 + 0 0− 0 + 2
0 + 0.5 + 1 0− 0.5− 0 0 + 0− 1
0.5 + 0 + 1 0.5− 0− 0 0 + 0− 1



=

−2.5 0.5 2
1.5 −0.5 −1
1.5 0.5 −1


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2.20. We are given two ordered bases in R2.

B = (b1,b2) =

([
2
1

]
,

[
−1
−1

])
, B′ = (b′1,b

′
2) =

([
2
−2

]
,

[
1
1

])
a.

Showing that both matrices have linearly independent columns, which means they are bases in R2.

[b1 b2] =

[
2 −1
1 −1

]
∼
[
1 0
0 1

]

[b′1 b′2] =

[
2 1
−2 1

]
∼
[
1 0
0 1

]
Drawing the basis vectors.

b1

b2

b′1

b′2

b.

As in the earlier example, PB′ = [b′1 b′2] maps a coordinate vector in [x]B′ back to the standard
basis. The inverse of PB = [b1 b2] will map from the standard basis to [x]B . Finding the inverse:

P−1
B =

[
2 −1
1 −1

]−1

=

[
1 −1
1 −2

]
In order to map a vector from B′ to B we need the following operations: [x]B = P−1

B PB′ [x]B′ . We
can calculate the matrix.

P1 = P−1
B PB′ =

[
1 −1
1 −2

] [
2 1
−2 1

]
=

[
1(2) + (−1)(−2) 1(1) + (−1)(1)
1(2) + (−2)(−2) 1(1) + (−2)(1)

]
=

[
2 + 2 1− 1
2 + 4 1− 2

]
=

[
4 0
6 −1

]
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c.

We have the following ordered basis in R3.

C = (c1, c2, c3) =

 1
2
−1

 ,
 0
−1
2

 ,
 1

0
−1


(i) Verifying that C is a basis. This is done by checking that the vectors are linearly independent.
This can be verified by checking that the RREF is the identity matrix.

[c1 c2 c3] =

 1 0 1
2 −1 0
−1 2 −1

 ∼
1 0 0

0 1 0
0 0 1


(ii) The standard basis of R3 is C ′ = (c′1, c

′
2, c
′
3). We are going to find the matrix P2 that performs

a basis change from C to C ′.
As seen earlier, a matrix where the columns make up a basis also gives us a recipe for mapping

back to the standard basis.

P2 =

 1 0 1
2 −1 0
−1 2 −1


d.

We have a homomorphism (linear mapping) Φ : R2 → R3, such that

Φ(b1 + b2) = c2 + c3

Φ(b1 − b2) = 2c1 − c2 + 3c3

Not stated, but I am assuming that these are the same bases as used earlier. Since Φ is a linear
mapping, we can write:

Φ(b1) + Φ(b2) = c2 + c3

Φ(b1)− Φ(b2) = 2c1 − c2 + 3c3

Adding both these together, we get:

2Φ(b1) = 2c1 + 4c3

Φ(b1) = c1 + 2c3

Now we can find Φ(b2).

Φ(b2) = Φ(b1) + Φ(b2)− Φ(b1)

= c2 + c3 − (c1 + 2c3)

= −c1 + c2 − c3

So, to sum up:

Φ(b1) = c1 + 2c3

Φ(b2) = −c1 + c2 − c3
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From this, we can read what the transformation matrix is (as shown in Example 2.21 in the text
book).

AΦ =

1 −1
0 1
2 −1


e.

Next we will find the transformation matrix A′ of Φ wrt. the bases B′ and C ′. When T is the
matrix that maps from C ′ to C and S is the matrix that maps from B′ to B, then

A′ = T−1AΦS

as per Theorem 2.20. Starting with T, which is NOT the matrix P2 we found earlier, which maps
from C to C ′! Therefore, in our case, T−1 = P2. so we need to find the inverse of that matrix.

The matrix S is just P1, so we can set up the entire calculation. (Not showing the matrix
multiplications).

A′ = T−1AΦS

= P2AΦP1

=

 1 0 1
2 −1 0
−1 2 −1

1 −1
0 1
2 −1

[4 0
6 −1

]

=

 1 0 1
2 −1 0
−1 2 −1

−2 1
6 −1
2 1



=

 0 2
−10 3
12 −4


f.

We have the following vector:

x =

[
2
3

]
B′

(i) Finding the corresponding vector expressed in B basis. This is just using matrix P1:

P1[x]B′ =

[
4 0
6 −1

] [
2
3

]
B′

=

[
8
9

]
B

(ii) Now we translate this point into coordinates given by C using the transformation matrix AΦ.

AΦ[x]B =

1 −1
0 1
2 −1

[8
9

]
B

=

−1
9
7


C
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(iii) We translate the point into C ′ coordinates, which is done with P2.

P2[x]C =

 1 0 1
2 −1 0
−1 2 −1

−1
9
7


C

=

 6
−11
12


C′

(iv) Finally we do all the calculations in one step using the translation matrix A′.

A′[x]B′ =

 0 2
−10 3
12 −4

[2
3

]
B′

=

 6
−11
12


C′
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Chapter 3: Analytic Geometry - Exercises

3.1. We are going to verify that

〈x,y〉 = x1y1 − (x1y2 + x2y1) + 2x2y2

is an inner product, i.e. it is symmetric, linear and positive definite.

(Symmetry)

〈x,y〉 = x1y1 − (x1y2 + x2y1) + 2x2y2

= y1x1 − (y1x2 + y2x1) + 2y2x2

= 〈y,x〉

(Linearity)

〈αx + βz,y〉 = (αx1 + βz1)y1 − ((αx1 + βz1)y2 + (αx2 + βz2)y1) + 2((αx2 + βz2)y2)

= αx1y1 + βz1y1 − (αx1y2 + βz1y2 + αx2y1 + βz2y1) + 2αx2y2 + 2βz2y2

= αx1y1 − (αx1y2 + αx2y1) + 2αx2y2 + βz1y1 − (βz1y2 + βz2y1) + 2βz2y2

= α
(
x1y1 − (x1y2 + x2y1) + 2x2y2

)
+ β

(
z1y1 − (z1y2 + z2y1) + 2z2y2

)
= α〈x,y〉+ β〈z,y〉

By the symmetric property, the opposite linear argument holds.

(Positive Definite)
Assume x 6= 0, that is either x1 6= 0 or x2 6= 0, then

〈x,x〉 = x2
1 − (x1x2 + x2x1) + 2x2

2

= x2
1 − 2x1x2 + 2x2

2

= x2
1 − 2x1x2 + x2

2 + x2
2

= (x1 − x2)2 + x2
2 > 0

As the sum of two positive values, this is always a positive value and strictly larger than 0 because
we assumed that x 6= 0. By setting in the null vector, we get:

〈0,0〉 = (0− 0)2 + 02 = 0

This shows that the operation is positive definite. All properties are satisfied, so 〈·, ·〉 is an inner
product.
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3.2. We will check if the following operation is an inner product.

〈x,y〉 = xT

[
2 0
1 2

]
y = xT

[
2y1

y1 + 2y2

]
= 2x1y1 + y1x2 + 2y2x2

This is NOT an inner product. It breaks symmetry:

〈y,x〉 = 2x1y1 + x1y2 + 2y2x2

(since y1x2 6= x1y2). And it does not have the positive definite property, which can be shown with
the counterexample xc = [−1,−1]T and yc = [1, 1]T . Then:

〈xc,yc〉 = 2(−1)(1) + (1)(−1) + 2(1)(−1) = −2− 1− 2 = −5

3.3. Computing the distance between two vectors, where distance is d(x,y) = ‖x−y‖ =
√
〈x− y,x− y〉.

x =

1
2
3

 , y =

−1
−1
0


a.

Using the usual dot product. Start by calculating the difference vector.

x− y =

1− (−1)
2− (−1)

3− 0

 =

2
3
3


‖x− y‖ =

√
〈x− y,x− y〉 =

√
22 + 32 + 32 =

√
4 + 9 + 9 =

√
22

b.

Calculating with 〈x,y〉 = xTAy.

‖x− y‖ =
√
〈x− y,x− y〉 =

√
(x− y)TA(x− y)

=

[2 3 3
] 2 1 0

1 3 −1
0 −1 2

2
3
3

 1
2

=

[2 3 3
] 7

8
3

 1
2

=
√

14 + 24 + 9 =
√

47
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3.4. Finding the angle. We have the vectors:

x =

[
1
2

]
, y =

[
−1
−1

]
General formula for calculating the angle between two vectors x and y:

cosω =
〈x,y〉
‖x‖‖y‖

(♠)

a.

Calculating the angle with the standard dot product. First we find the lengths of the vectors.

‖x‖ =
√

12 + 22 =
√

5

‖y‖ =
√

(−1)2 + (−1)2 =
√

2

The dot product.
〈x,y〉 = (1)(−1) + (2)(−1) = −1− 2 = −3

Applying to the formula (♠).

cosω =
〈x,y〉
‖x‖‖y‖

=
−3√
5
√

2
=⇒ ω = 2.819842

The angle corresponds to around 161.5◦. This can be seen in the following drawing, where the
angle is close to 180◦.

x

y

ω

b.

Calculating the angle when
〈x,y〉 = xTBy.

Finding the lengths.

‖x‖2 =
[
1 2

] [2 1
1 3

] [
1
2

]
=
[
1 2

] [4
7

]
= 18 =⇒ ‖x‖ =

√
18 = 3

√
2

‖y‖2 =
[
−1 −1

] [2 1
1 3

] [
−1
−1

]
=
[
−1 −1

] [−3
−4

]
= 7 =⇒ ‖y‖ =

√
7

39



Finding the inner product.

〈x,y〉 =
[
1 2

] [2 1
1 3

] [
−1
−1

]
=
[
1 2

] [−3
−4

]
= (1)(−3) + (2)(−4) = −3− 8 = −11

Applying the formula (♠).

cosω =
〈x,y〉
‖x‖‖y‖

=
−11

3
√

2
√

7
=⇒ ω = 2.94104

With this inner product, the angle is around 168.5◦.

3.5. We have a subspace U ⊂ R5 and x ∈ R5 given by:

U = span




0
−1
2
0
2

 ,


1
−3
1
−1
2

 ,

−3
4
1
2
1

 ,

−1
−3
5
0
7


 , x =


−1
−9
−1
4
1


a.

Finding the orthogonal projection πU from x to U . First an important observation. The columns
that span U are not linearly independent.

0 1 −3 −1
−1 −3 4 −3
2 1 1 5
0 −1 2 0
2 2 1 7

 ∼


1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 0
0 0 0 0


The fourth column is a linear combination of the first three columns. This means that U spans a
3-dimensional space, and the proper basis will only be the first 3 columns.

Following the notation in the text book, let us call the vectors that span U = (b1,b2,b3) and
the matrix with these vectors as its column B. From equation (3.58) in the text book, we get the
following formula for the projection (skipping the intermediate matrix multiplications):

πU (x) = B(BTB)−1BTx

=


0.4762 −0.2857 0.1905 −0.1429 −0.3333
−0.2857 0.6825 0.0635 0.2857 −0.2222
0.1905 0.0635 0.9206 0.1429 0.1111
−0.1429 0.2857 0.1429 0.1429 0
−0.3333 −0.2222 0.1111 0 0.7778



−1
−9
−1
4
1



=


1
−5
−1
−2
3


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Not showing the calculations, but we can verify that πU (x) ∈ U by finding the RREF of [b1 b2 b3 πU (x)].
It turns out that:

πU (x) = −3b1 + 4b2 + b3.

For a set U ⊂ R5 and some point x 6∈ U we have found the projection πU (x) marked in red, which
is the point in U closest to the point x. Here is an illustration:

R5

U πU (x)

x

b.

Calculating the distance d(x, U), which amounts to calculating the shortest distance d(x, πU (x)).
Calculating the difference vector:

x− πU (x) =


−1
−9
−1
4
1

−


1
−5
−1
−2
3

 =


−2
−4
0
6
−2



d(x, πU (x)) = ‖x− πU (x)‖ =
√
〈x− πU (x),x− πU (x)〉

=
√

(−2)2 + (−4)2 + 02 + 62 + (−2)2

=
√

4 + 16 + 36 + 4

=
√

60

= 2
√

15
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3.6. Working in R3 with the standard basis e1, e2, e3 and inner product

〈x,y〉 = xTAy = xT

2 1 0
1 2 −1
0 −1 2

y.

a.

We are going to determine the orthogonal projection of πU (e2) onto the plane in R3 defined as

U = span(e1, e3) =

1
0
0

 ,
0

0
1


Following the general guidelines from the text book. The projection we need must satisfy the
following:

πU (e2) = λ1e1 + λ2e3

=
[
e1 e3

] [λ1

λ2

]

=

1 0
0 0
0 1

[λ1

λ2

]

= Bλ,

such that the λi ensures that πU (e2) is closest to e2. In other words, the vector e2 − πU (e2) must
be orthogonal to all basis vectors of U . This gives the following conditions:

〈e1, e2 − πU (e2)〉 = 0

〈e3, e2 − πU (e2)〉 = 0

By linearity of the inner product.

〈e1, e2〉 − 〈e1, πU (e2)〉 = 0

〈e3, e2〉 − 〈e1, πU (e2)〉 = 0

Writing out the matrix equations.

eT
1 Ae2 − eT

1 AπU (e2) = 0

eT
3 Ae2 − eT

3 AπU (e2) = 0

eT
1 Ae2 = eT

1 AπU (e2)

eT
3 Ae2 = eT

3 AπU (e2)
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We can simplify a bit by reducing some of the matrices and vectors into numbers.

eT
1 Ae2 =

[
1 0 0

] 2 1 0
1 2 −1
0 −1 2

0
1
0



=
[
1 0 0

]  1
2
−1


= 1

eT
3 Ae2 =

[
0 0 1

] 2 1 0
1 2 −1
0 −1 2

0
1
0



=
[
0 0 1

]  1
2
−1


= −1

The projection point is unknown, so we will call the coordinates x1, x2 and x3.

eT
1 AπU (e2) =

[
1 0 0

] 2 1 0
1 2 −1
0 −1 2

x1

x2

x3



=
[
1 0 0

]  2x1 + x2

x1 + 2x2 − x3

−x2 + 2x3


= 2x1 + x2

eT
3 AπU (e2) =

[
0 0 1

] 2 1 0
1 2 −1
0 −1 2

x1

x2

x3



=
[
0 0 1

]  2x1 + x2

x1 + 2x2 − x3

−x2 + 2x3


= −x2 + 2x3
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Recalling the equations.

eT
1 Ae2 = eT

1 AπU (e2)

eT
3 Ae2 = eT

3 AπU (e2)

Replacing the known quantities.

1 = 2x1 + x2

−1 = −x2 + 2x3

We can add a third condition, since the plane U is spanned by e1 and e3, it will always be 0 in e2.
The same must be true for the projected point on the plane, which means that x2 = 0. This gives
us.

1 = 2x1

−1 = 2x3

When solved for x1 and x3.

x1 =
1

2

x3 = −1

2

Hence we know that:

πU (e2) =

 1
2
0
− 1

2


b.

Calculating the distance d(e2, πU (e2)). Finding the difference vector.

e2 − πU (e2) =

0
1
0

−
 1

2
0
− 1

2

 =

− 1
2

1
1
2


Calculating the distance with the inner product.

d(e2, πU (e2)) = ‖e2 − πU (e2)‖ =
√
〈e2 − πU (e2), e2 − πU (e2)〉

=

[− 1
2 1 1

2

] 2 1 0
1 2 −1
0 −1 2

− 1
2

1
1
2


1
2

=

[− 1
2 1 1

2

] 0
1
0

 1
2

=
√

1 = 1
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c.

Illustration of the situation. U is a plane going along the e1 and e3 bases. The projected point
on πU (e2) ∈ U is marked as a red point. The ’shortest’ distance from e2 to the plane is distorted
because we are using a special kind of inner product.

e3

e1 e2

U

3.7. Recalling a term. Endomorphism: π : V → V is linear. Let V be a vector space and π and
endomorphism of V , and idV is the identity endomorphism on V .
a.

Prove that π is a projection if and only if idV − π is a projection.

Proof.
⇒) Assuming π is a projection. That means that for any x ∈ V , then π(π(x)) = π(x). To show
that idV (x)− π(x) is a projection, we have to show that

idV

(
idV (x)− π(x)

)
− π

(
idV (x)− π(x)

)
= idV (x)− π(x).

Doing the calculations:

idV

(
idV (x)− π(x)

)
− π

(
idV (x)− π(x)

)
Linearity

= idV
(
idV (x)

)
− idV

(
π(x)

)
−
[
π
(
idV (x)

)
− π

(
π(x)

)]
Identity

= idV (x)− π(x)−
[
π(x)− π

(
π(x)

)]
Assumpt.

= idV (x)− π(x)((((
(((−π(x) + π(x)

= idV (x)− π(x)

This shows that idV − π is a projection when π is a projection.
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⇐) Assuming idV (x)− π(x) is a projection. This means that for any x ∈ V :

idV

(
idV (x)− π(x)

)
− π

(
idV (x)− π(x)

)
= idV (x)− π(x).

By subtracting the right hand side, we get:

idV

(
idV (x)− π(x)

)
− π

(
idV (x)− π(x)

)
− idV (x) + π(x) = 0

By the linearity property and the identity property as shown above, we get:

idV (x)− π(x)−
[
π(x)− π

(
π(x)

)]
− idV (x) + π(x) = 0

((((
(((idV (x)− π(x)− π(x) + π

(
π(x)

)
((((

((((−idV (x) + π(x) = 0

Which leaves us with:
π
(
π(x)

)
= π(x)

This shows that π is a projection when idv −π is a projection. By implications both ways, we have
proved that the statements are equivalent. �
b.

Assuming π is a projection. Calculating Im(idV − π) and ker(idV − π) as a function of Im(π) and
ker(π).

Let’s assume that U is some subspace of V and that π is a projection onto that subspace. Let
us also consider a simplified example to make this more concrete. In R2 we have the subspace U
given by y = x as shown in this image.

For any point x ∈ U the projection will simply return x. For any point x 6∈ U the projection
will be a point on the ’boundary’ of U . This means that Im(π) = U .

Any point on the y-axis will be projected down to the origin, so we can express the kernel of π
as:

ker(π) =

{[
0
y

]
: y ∈ R

}

R2

U

Now if we have some point x ∈ U such as (1, 1), then idV will return (1, 1) and so will π. In fact,
idV − π will map any point in U to 0. For any point outside U such as (2, 5), the projection will
map it down to (2, 2). The difference idV − π will be (0, 3) which is in the kernel of π.

A point in the kernel of π, such as (0, 2) will be projected to the origin, and the difference
idV − π will be (0, 2), which is still in the kernel of π.
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With this simplified example in mind, we can move on to the more general terms. Now U is some
general subspace of V .

Image Im(idV − π) = ker(π)

Proof.
⊂) Assume x ∈ Im(idV − π). There are two cases we must check.

(i) Assume further that x ∈ U , then π(x) = x. In this case

idV (x)− π(x) = x− x = 0

which shows that x ∈ ker(π) since 0 ∈ U and π(0) = 0. This means Im(idV − π) ⊂ ker(π) when
x ∈ U .

(ii) Now assume x 6∈ U .

idV (x)− π(x) = x− π(x)

If we take the projection of this point:

π
(
idV (x)− π(x)

)
= π(x)− π

(
π(x)

)
= π(x)− π(x) = 0

which shows that x ∈ ker(π) so Im(idV − π) ⊂ ker(π) when x 6∈ U .
Both of these together show that Im(idV − π) ⊂ ker(π) for all x ∈ V .

⊃) Assume now that x ∈ ker(π), so π(x) = 0.

x = idV (x)− 0 = idV (x)− π(x)

which shows that x ∈ Im(idV − π) and therefore ker(π) ⊂ Im(idV − π). By inclusion both ways,
we can conclude that Im(idV − π) = ker(π). �

Kernel ker(idV − π) = Im(π)

Proof.
⊂) Assume x ∈ ker(idV − π), so idV (x)− π(x) = 0. Then the following must be true:

idV (x)− π(x) = 0 =⇒ idV (x) = π(x) =⇒ x = π(x)

and the projection π(x) = x only when x ∈ Im(π) which shows that ker(idV − π) ⊂ Im(π).

⊃) Assume now that x ∈ Im(π) which means π(x) = x. The reverse argument shows:

x = π(x) =⇒ idV (x) = π(x) =⇒ idV (x)− π(x) = 0

so x ∈ ker(idV − π) which shows Im(π) ⊂ ker(idV − π).
By inclusion both ways we have proved that ker(idV − π) = Im(π). �
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3.8. Using Gram-Schmidt to turn the basis B = (b1,b2) into an ONB (orthonormal basis) C.

b1 =

1
1
1

 , b2 =

−1
2
0


We start by making the columns orthogonal, which they aren’t since bT

1 b2 = 1. Set v1 = b1 Then
we can construct the orthogonal vector from b2 as follows:

v2 = b2 −
bT

1 b2

bT
1 b1

b1

Some intermediary calculations:

bT
1 b2 = (1)(−1) + (1)(2) + 0 = −1 + 2 = 1

bT
1 b1 = (1)(1) + (1)(1) + (1)(1) = 1 + 1 + 1 = 3

We get:

v2 = b2 −
bT

1 b2

bT
1 b1

b1

= b2 −
1

3
b1

=

−1
2
0

−
1/3

1/3
1/3



=

−4/3
5/3
−1/3


The vectors v1 and v2 are orthogonal, which we can see by calculating the inner product.

vT
1 v2 = (1)(−4/3) + (1)(5/3) + (1)(−1/3) = 0

The final step is to make the vectors orthonormal. This is done by scaling them down.

c1 =
1

‖v1‖
v1 =

1√
3

1
1
1

 , c2 =
1

‖v2‖
v2 =

1√
42

−4
5
−1


Where:

‖v2‖ =
√

(−4/3)2 + (5/3)2 + (−1/3)2 =
√

42/9 =
√

42/3 =⇒ 1

‖v2‖
=

3√
42
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3.9. Let n ∈ N and x1, . . . , xn > 0 such that x1 + · · ·+ xn = 1. We will need the Cauchy-Schwarz
inequality (3.17):

|〈x,y〉| ≤ ‖x‖‖y‖.
a.

Showing that

n ≤
n∑

i=1

x2
i .

We choose the following vectors:

x =


x1

x2

...
xn

 , y =


1
1
...
1


The inner product becomes:

〈x,y〉 = (x1)(1) + (x2)(1) + . . .+ (xn)(1)

= x1 + x2 + . . . xn

= 1

where the last equality holds due to the property of the xi values. The norms become:

‖x‖ =
√
x2

1 + x2
2 + . . .+ x2

n

‖y‖ =
√

12 + 12 + . . .+ 12 =
√
n

By the Cauchy-Schwarz inequality (don’t need the absolute value since all values are positve).

|〈x,y〉| ≤ ‖x‖‖y‖

From our calculations, this means:

1 ≤
√
x2

1 + x2
2 + . . .+ x2

n

√
n

Squaring both sides (inequality remains unchanged as both sides are positive).

1 ≤
(
x2

1 + x2
2 + . . .+ x2

n

)
n

1 ≤ n
n∑

i=1

x2
i

Dividing both sides with n.

1

n
≤

n∑
i=1

x2
i

This is the result we wanted to show.
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b.

Showing that

n2 ≤
n∑

i=1

1

xi
.

We choose the following vectors:

x =


√
x1

...√
xn

 , y =


1√
x1

...
1√
xn


Dot product:

〈x,y〉 =

(
√
x1 ·

1
√
x1

)
+ . . .+

(
√
xn ·

1
√
xn

)
= 1 + . . .+ 1 = n

Norms.

‖x‖ =

√
(
√
x1)

2
+ . . .+ (

√
xn)

2
=
√
x1 + . . .+ xn =

√
1 = 1

‖y‖ =

√(
1
√
x1

)2

+ . . .+

(
1
√
xn

)2

=

√
1

x1
+ . . .+

1

xn

Applying the Cauchy-Schwarz inequality.

|〈x,y〉| ≤ ‖x‖‖y‖

In this case, we have found that we have:

n ≤
√

1

x1
+ . . .+

1

xn

Squaring both sides.

n2 ≤ 1

x1
+ . . .+

1

xn

Which is what we wanted to show.

n2 ≤
n∑

i=1

1

xi
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3.10. Rotating the following vectors by 30◦.

x1 =

[
2
3

]
, x2 =

[
0
−1

]
.

In degrees 30◦ is 1/12th of a full circle. In radians this is

θ =
2π

12
=
π

6
.

With this, we can define a standard rotation matrix R:

R =

[
cos θ − sin θ
sin θ cos θ

]
=

[√
3

2 − 1
2

1
2

√
3

2

]

Finding the rotated vectors:

r1 = Rx1 =

[
0.2320508
3.5980762

]
r2 = Rx2 =

[
0.5

−0.8660254

]
Plotting the rotation of x1.

x1

r1

θ

Plotting the rotation of x2.

x2
r2
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Chapter 4: Matrix Decompositions - Exercises

4.1. Calculating the determinant with Laplacian expansion across the first row of A.

A =

1 3 5
2 4 6
0 2 4



det(A) = (1)

∣∣∣∣4 6
2 4

∣∣∣∣− (3)

∣∣∣∣2 6
0 4

∣∣∣∣+ (5)

∣∣∣∣2 4
0 2

∣∣∣∣
= (1)

(
16− 12

)
− (3)

(
8− 0

)
+ (5)

(
4− 0

)
= 4− 24 + 20

= 0

4.2. Finding an efficient way of computing the following determinant.

A =


2 0 1 2 0
2 −1 0 1 1
0 1 2 1 2
−2 0 2 −1 2
2 0 0 1 1


Using the property of determinants which say that adding a row to another does not change the
determinant. We can do this and simplify the calculations.

A
II−V∼


2 0 1 2 0
0 −1 0 0 0
0 1 2 1 2
−2 0 2 −1 2
2 0 0 1 1

 V−I∼


2 0 1 2 0
0 −1 0 0 0
0 1 2 1 2
−2 0 2 −1 2
0 0 −1 −1 1

 IV +I∼


2 0 1 2 0
0 −1 0 0 0
0 1 2 1 2
0 0 3 1 2
0 0 −1 −1 1

 III−IV∼


2 0 1 2 0
0 −1 0 0 0
0 1 −1 0 0
0 0 3 1 2
0 0 −1 −1 1



det(A) = (2)

∣∣∣∣∣∣∣∣
−1 0 0 0
1 −1 0 0
0 3 1 2
0 −1 −1 1

∣∣∣∣∣∣∣∣ = (2)(−1)

∣∣∣∣∣∣
−1 0 0
3 1 2
−1 −1 1

∣∣∣∣∣∣ = (2)(−1)(−1)

∣∣∣∣ 1 2
−1 1

∣∣∣∣

= (2)(−1)(−1)
(

(1)(1)− (−1)(2)
)

= (2)(−1)(−1)(3) = 6

Verified by calculating the original determinant on a computer.
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4.3. Computing the eigenspace.
a.

A =

[
1 0
1 1

]
Finding the characteristic polynomial.

det(A− λI2) = det

([
1 0
1 1

]
−
[
λ 0
0 λ

])
=

∣∣∣∣1− λ 0
1 1− λ

∣∣∣∣ = (1− λ)2

When setting this equal to 0, we see that the solution is λ = 1 with multiplicity 2. To find the
eigenvectors, we solve the homogeneous system:[

1− λ 0
1 1− λ

] [
x1

x2

]
=

[
0
0

]
Setting in λ = 1. [

0 0
1 0

] [
x1

x2

]
=

[
0
0

]
Writing this out as an augmented matrix gives the result:[

1 0
∣∣ 0

0 0
∣∣ 0

]
So, x2 is a free variable and x1 = 0. The eigenvector is therefore:

x =

[
0
x2

]
= x2

[
0
1

]
for any x2 ∈ R. Let’s set x2 = 1 and check the answer. First the matrix calculation.

Ax =

[
1 0
1 1

] [
0
1

]
=

[
1(0) + 0(1)
1(0) + 1(1)

]

=

[
0 + 0
0 + 1

]

=

[
0
1

]
And, with the eigenvalue.

λx = (1)

[
0
1

]
=

[
0
1

]
Hence, the eigenspace is spanned by:

span

([
0
1

])
.
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b.

B =

[
−2 2
2 1

]
Finding the characteristic polynomial.

det(B − λI2) = det

([
−2 2
2 1

]
−
[
λ 0
0 λ

])
=

∣∣∣∣−2− λ 2
2 1− λ

∣∣∣∣ = (−2− λ)(1− λ)− 2 · 2

= λ2 + λ− 6 =⇒ (λ− 2)(λ+ 3)

The solutions are λ1 = 2 and λ2 = −3. Now we can find the eigenvectors by solving (B−λI)x = 0.

Using λ1 = 2:[
−4 2 0
2 −1 0

]
=⇒

[
1 −0.5 0
0 0 0

]
=⇒ x1 = 0.5x2

x2 = x2
=⇒ x =

[
0.5
1

]
Verifying:

Bx =

[
−2 2
2 1

] [
0.5
1

]
=

[
1
2

]
, λx = (2)

[
0.5
1

]
=

[
1
2

]

Using λ2 = −3 [
1 2 0
2 4 0

]
=⇒

[
1 2 0
0 0 0

]
=⇒ x1 = −2x2

x2 = x2
=⇒ x =

[
−2
1

]
Verifying:

Bx =

[
−2 2
2 1

] [
−2
1

]
=

[
6
−3

]
, λx = (−3)

[
−2
1

]
=

[
6
−3

]

From these results we have the following eigenspaces.

E2 = span

([
0.5
1

])
, E−3 = span

([
2
1

])

54



4.4. Computing eigenspaces for A.

A =


0 −1 1 1
−1 1 −2 3
2 −1 0 0
1 −1 1 0

 =⇒ (A− λI4) =


−λ −1 1 1
−1 1− λ −2 3
2 −1 −λ 0
1 −1 1 −λ


Finding the characteristic polynomial. (Skipping the calculations).

det(A− λI4) =

∣∣∣∣∣∣∣∣
−λ −1 1 1
−1 1− λ −2 3
2 −1 −λ 0
1 −1 1 −λ

∣∣∣∣∣∣∣∣ = λ4 − λ3 − 3λ2 + λ+ 2

= (λ+ 1)2(λ− 1)(λ− 2)

So the roots are: λ1 = −1 (with multiplicity 2), λ2 = 1 and λ3 = 2. Finding the eigenvectors by
solving (A− λI4)x = 0.

Using λ1 = −1 for (A− λI4) in the augmented matrix [(A− λI4) 0]:
1 −1 1 1 0
−1 2 −2 3 0
2 −1 1 0 0
1 −1 1 1 0

 =⇒


1 0 0 0 0
0 1 −1 0 0
0 0 0 1 0
0 0 0 0 0

 =⇒

x1 = 0
x2 = x3

x3 = x3

x4 = 0

=⇒ x =


0
1
1
0


Verifying:

Ax =


0 −1 1 1
−1 1 −2 3
2 −1 0 0
1 −1 1 0




0
1
1
0

 =


0
−1
−1
0

 , λx = (−1)


0
1
1
0

 =


0
−1
−1
0


Even though the characteristic polynomial has algebraic multiplicity of 2, it only has one corre-
sponding eigenvector, so the geometric multiplicity is 1.

Using λ2 = 1 for (A− λI4) in the augmented matrix [(A− λI4) 0]:
−1 −1 1 1 0
−1 0 −2 3 0
2 −1 −1 0 0
1 −1 1 −1 0

 =⇒


1 0 0 −1 0
0 1 0 −1 0
0 0 1 −1 0
0 0 0 0 0

 =⇒

x1 = x4

x2 = x4

x3 = x4

x4 = x4

=⇒ x =


1
1
1
1


Verifying:

Ax =


0 −1 1 1
−1 1 −2 3
2 −1 0 0
1 −1 1 0




1
1
1
1

 =


1
1
1
1

 , λx = (1)


1
1
1
1

 =


1
1
1
1


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Using λ3 = 2 for (A− λI4) in the augmented matrix [(A− λI4) 0]:
−2 −1 1 1 0
−1 −1 −2 3 0
2 −1 −2 0 0
1 −1 1 −2 0

 =⇒


1 0 0 −1 0
0 1 0 0 0
0 0 1 −1 0
0 0 0 0 0

 =⇒

x1 = x4

x2 = 0
x3 = x4

x4 = x4

=⇒ x =


1
0
1
1


Verifying:

Ax =


0 −1 1 1
−1 1 −2 3
2 −1 0 0
1 −1 1 0




1
0
1
1

 =


2
0
2
2

 , λx = (2)


1
0
1
1

 =


2
0
2
2


Based on the results, we have the following eigenspaces.

E−1 = span




0
1
1
0


 , E1 = span




1
1
1
1


 , E2 = span




1
0
1
1




4.5. Checking if matrices are invertible and/or diagonalizable. Whether a matrix is invertible
can be checked easily by calculating the determinant. Whether a matrix is diagonalizable is more
difficult. By the Diagonalization Theorem, an n×n matrix is diagonalizable if, and only if, it has n
linearly independent eigenvectors. Another theorem (4.21) says that a symmetric matrix is always
diagonalizable.

[
1 0
0 1

]
(I D) This is the 2× 2 identity matrix. It is its own inverse and it is on a diagonal form.

[
1 0
0 0

]
(�I D) The determinant is 0 so it is NOT invertible. It is on a diagonal form. (Or: it is symmetric,
so it is diagonalizable.) [

1 1
0 1

]
=⇒

∣∣∣∣1− λ 1
0 1− λ

∣∣∣∣ =⇒ p(λ) = (1− λ)2

(I��D) The determinant is 1 so it is invertible. Not showing all the calculations, but it has eigenvalue
λ = 1 with algebraic multiplicity of 2, but it only has one eigenvector. By the Diagonalization
Theorem, it must have two linearly independent eigenvectors, so this matrix is NOT diagonalizable.[

0 1
0 0

]
=⇒

∣∣∣∣−λ 1
0 −λ

∣∣∣∣ =⇒ p(λ) = λ2

(�I��D) Eigenvector is 0 so it is NOT invertible. It has eigenvalue λ = 0 with algebraic multiplicity
of 2, but this one also has only one eigenvector. By the Diagonalization Theorem, this matrix is
NOT diagonalizable.
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4.6. Computing the eigenspace and checking if the matrices are diagonalizable.
a.

A =

2 3 0
1 4 3
0 0 1

 =⇒ (A− λI3) =

2− λ 3 0
1 4− λ 3
0 0 1− λ


Finding the characteristic polynomial (going along the first column).

p(λ) = det(A− λI4) = (2− λ)

∣∣∣∣4− λ 3
0 1− λ

∣∣∣∣− (1)

∣∣∣∣3 0
0 1− λ

∣∣∣∣
= (2− λ)

(
(4− λ)(1− λ)− 0

)
− (1)

(
(3)(1− λ)− 0

)

= (2− λ)
(
λ2 − 5λ+ 4

)
−
(

3− 3λ
)

= −λ3 + 7λ2 − 11λ+ 5

= (λ− 1)2(λ− 5)

By inspection λ1 = 1 is a root since p(1) = 0. After polynomial division and the quadratic formula
λ2 = 5, where λ1 = 1 is a root with algebraic multiplicity of 2.

Calculating the eigenvectors by solving (A− λI3)x = 0.
Setting in λ = 1 and solving [(A− λI3) 0].1 3 0 0

1 3 3 0
0 0 0 0

 ∼
1 3 0 0

0 0 1 0
0 0 0 0

 ⇒ x1 = −3x2

x2 = x2

x3 = 0
=⇒ x =

−3
1
0


Verifying:

Ax =

2 3 0
1 4 3
0 0 1

−3
1
0

 =

−3
1
0

 , λx = (1)

−3
1
0

 =

−3
1
0


Setting in λ = 5 and solving [(A− λI3) 0].−3 3 0 0

1 1 3 0
0 0 −4 0

 ∼
1 −1 0 0

0 0 0 0
0 0 1 0

 ⇒ x1 = x2

x2 = x2

x3 = 0
=⇒ x =

1
1
0


Verifying:

Ax =

2 3 0
1 4 3
0 0 1

1
1
0

 =

5
5
0

 , λx = (5)

1
1
0

 =

5
5
0


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There are only two eigenvectors, and though they are linearly independent this matrix is not
diagonalizable by the Diagonalization Theorem. The eigenspaces are:

E1 = span

−3
1
0

 , E5 = span

1
1
0


b.

A =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 =⇒ (A− λI4) =


1− λ 1 0 0

0 −λ 0 0
0 0 −λ 0
0 0 0 −λ


Finding the characteristic polynomial, going down the first column.

p(λ) = det(A− λI) = (1− λ)(−λ3)

By direct inspection we see that the roots are λ1 = 1 and λ2 = 0 with algebraic multiplicity of 3.
Setting in λ = 1 and solving [(A− λI4) 0].

0 1 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ∼


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ⇒
x1 = x1

x2 = 0
x3 = 0
x4 = 0

=⇒ x =


1
0
0
0


Verifying:

Ax =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0




1
0
0
0

 =


1
0
0
0

 , λx = (1)


1
0
0
0

 =


1
0
0
0


Setting in λ = 0 and solving [(A− λI4) 0].

1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ∼


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ⇒
x1 = −x2

x2 = x2

x3 = x3

x4 = x4

=⇒ x =


−1
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


Verifying:

Ax =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0



−1
1
0
0

 =


0
0
0
0

 , λx = (0)


−1
1
0
0

 =


0
0
0
0


The two other vectors clearly give 0. We have three, linearly independent vectors (by inspection, not
calculated), so there are a total of four linearly independent eigenvectors. By the Diagonalization
Theorem, A is diagonalizable. The eigenspace E1 is spanned by the single vector found above, and
E0 is spanned by the three vectors just found.
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4.7. Determining if the following matrices are diagonalizable. If they are, we find the diagonal
form such that A = PDP−1.
a.

A =

[
0 1
−8 4

]
=⇒ (A− λI2) =

[
−λ 1
−8 4− λ

]
Characteristic polynomial.

det(A− λI2) =

∣∣∣∣−λ 1
−8 4− λ

∣∣∣∣ = λ2 − 4λ+ 8

This characteristic polynomial has no real solutions, only complex solutions. With the quadratic
formula we find that λ1 = 2− 2i and λ2 = 2 + 2i.

Using λ1 = 2− 2i[
−2 + 2i 1 0
−8 2 + 2i 0

]
=⇒

[
1 −0.25− 0.25i 0
0 0 0

]
=⇒ x1 = (0.25 + 0.25i)x2

x2 = x2
=⇒ x =

[
0.25 + 0.25i

1

]
Verifying:

Ax =

[
0 1
−8 4

] [
0.25 + 0.25i

1

]
=

[
1

2− 2i

]
, λx = (2− 2i)

[
0.25 + 0.25i

1

]
=

[
1

2− 2i

]

Using λ2 = 2 + 2i[
−2− 2i 1 0
−8 2− 2i 0

]
=⇒

[
1 −0.25 + 0.25i 0
0 0 0

]
=⇒ x1 = (0.25− 0.25i)x2

x2 = x2
=⇒ x =

[
0.25− 0.25i

1

]
Verifying:

Ax =

[
0 1
−8 4

] [
0.25− 0.25i

1

]
=

[
1

2 + 2i

]
, λx = (2 + 2i)

[
0.25− 0.25i

1

]
=

[
1

2 + 2i

]
There are two linearly independent eigenvectors, so by the Diagonalization Theorem this matrix
has a diagonal form. From the eigenvectors we can construct the matrix P . We can also calculate
the inverse P−1.

P =

[
0.25− 0.25i 0.25 + 0.25i

1 1

]
=⇒ P−1 =

[
2i 0.5− 0.5i
−2i 0.5 + 0.5i

]
The diagonal matrix D has the eigenvalues on the diagonal (corresponding to the eigenvectors):

D =

[
2 + 2i 0

0 2− 2i

]
By doing all the calculations, we can verify that:

PDP−1 =

[
0 1
−8 4

]
= A.

59



b.

A =

1 1 1
1 1 1
1 1 1

 =⇒ A− λI3 =

1− λ 1 1
1 1− λ 1
1 1 1− λ


First observe that this matrix is symmetric, which means it is diagonalizable. The rows are not
linearly independent, but all that matters is that the eigenvectors are. Finding the characteristic
polynomial. (Skipping the intermediary calculations).

p(λ) = det(A− λI3) = −λ3 + 3λ2 = λ2(3− λ)

From this expression we can immediately see that λ1 = 0 is a root with algebraic multiplicity of 2,
as well as λ2 = 3.

Using λ1 = 0 for (A− λI3) in the augmented matrix [(A− λI3) 0]:1 1 1 0
1 1 1 0
1 1 1 0

 =⇒

1 1 1 0
0 0 0 0
0 0 0 0

 =⇒
x1 = −x2 − x3

x2 = x2

x3 = x3

=⇒ x =

−1
1
0

 and x =

−1
0
1


Verifying:

Ax =

1 1 1
1 1 1
1 1 1

−1
0
1

 =

0
0
0

 , λx = (0)

−1
0
1

 =

0
0
0


It’s essentially the same calculation for the other vector. In this case we have both an algebraic
multiplicity of 2 and a geometric multiplicity of 2.

Using λ2 = 3 for (A− λI4) in the augmented matrix [(A− λI4) 0]:−2 1 1 0
1 −2 1 0
1 1 −2 0

 =⇒

1 0 −1 0
0 1 −1 0
0 0 0 0

 =⇒
x1 = x3

x2 = x3

x3 = x3

=⇒ x =

1
1
1


Verifying:

Ax =

1 1 1
1 1 1
1 1 1

1
1
1

 =

3
3
3

 , λx = (3)

1
1
1

 =

3
3
3


We have three linearly independent eigenvectors, so we can again confirm that A is diagonalizable.
Constructing the matrix P for eigenvalues 3, 0, 0.

P =

1 −1 −1
1 0 1
1 −1 0

 =⇒ P−1 =

 1
3

1
3

1
3

− 1
3 − 1

3
2
3

− 1
3

2
3 − 1

3

 , D =

3 0 0
0 0 0
0 0 0


By calculating we can confirm that PDP−1 = A.

60



c.

A =


5 4 2 1
0 1 −1 −1
−1 −1 3 0
1 1 −1 2

 =⇒ (A− λI4) =


5− λ 4 2 1

0 1− λ −1 −1
−1 −1 3− λ 0
1 1 −1 2− λ


Characteristic polynomial. (Without calculations).

p(λ) = det(A− λI4) = λ4 − 11λ3 + 42λ2 − 64λ+ 32

This polynomial has the solutions: λ1 = 4 (with multiplicity 2), λ2 = 2, λ1 = 1.

Using λ1 = 4 for (A− λI4) in the augmented matrix [(A− λI4) 0]:
1 4 2 1
0 −4 −1 −1
−1 −1 −2 0
1 1 −1 −3

 =⇒


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =⇒

x1 = 0
x2 = 0
x3 = 0
x4 = 0

=⇒ x =


0
0
0
0


In order for a 4x4 matrix to be diagonalizable it has to have 4 linearly independent vectors. In
this case we only have one vector for a root with algebraic multiplicity of 2. There is also no need
to verify that this is an eigenvector since it is obvious that A0 = 40. We can check the other two
eigenvalues to verify that we only get 3 linearly independent eigenvectors.

Using λ2 = 2 for (A− λI4) in the augmented matrix [(A− λI4) 0]:
3 4 2 1
0 −1 −1 −1
−1 −1 1 0
1 1 −1 0

 =⇒


1 0 0 −1
0 1 0 1
0 0 1 0
0 0 0 0

 =⇒

x1 = x4

x2 = −x4

x3 = 0
x4 = x4

=⇒ x =


1
−1
0
1


Verifying:

Ax =


5 4 2 1
0 1 −1 −1
−1 −1 3 0
1 1 −1 2




1
−1
0
1

 =


2
−2
0
2

 , λx = (2)


1
−1
0
1

 =


2
−2
0
2



Using λ3 = 1 for (A− λI4) in the augmented matrix [(A− λI4) 0]:
4 4 2 1
0 0 −1 −1
−1 −1 2 0
1 1 −1 1

 =⇒


1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 =⇒

x1 = −x2

x2 = x2

x3 = 0
x4 = 0

=⇒ x =


−1
1
0
0


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Verifying:

Ax =


5 4 2 1
0 1 −1 −1
−1 −1 3 0
1 1 −1 2



−1
1
0
0

 =


−1
1
0
0

 , λx = (1)


−1
1
0
0

 =


−1
1
0
0


As suspected we only have three linearly independent eigenvectors. By the Diagonalization Theo-
rem, this matrix is NOT diagonalizable.

d.

A =

 5 −6 −6
−1 4 2
3 −6 −4

 =⇒ (A− λI3) =

5− λ −6 −6
−1 4− λ 2
3 −6 −4− λ


Characteristic polynomial:

p(λ) = −λ3 + 5λ2 − 8λ+ 4 = −(x− 2)2(x− 1)

Solutions are λ1 = 2 and λ2 = 1, where the 2 has multiplicity 2. Now we need to check that the
corresponding eigenvectors are linearly independent.

Using λ1 = 2 for (A− λI3) in the augmented matrix [(A− λI3) 0]: 3 −6 −6
−1 2 2
3 −6 −6

 =⇒

1 −2 −2 0
0 0 0 0
0 0 0 0

 =⇒
x1 = 2x2 + 2x3

x2 = x2

x3 = x3

=⇒ x =

2
1
0

 and x =

2
0
1


We have two free variables and get two vectors for λ1 = 2. Verifying:

Ax =

 5 −6 −6
−1 4 2
3 −6 −4

2
1
0

 =

4
2
0

 , λx = (2)

2
1
0

 =

4
2
0


And for the second eigenvector.

Ax =

 5 −6 −6
−1 4 2
3 −6 −4

2
0
1

 =

4
0
2

 , λx = (2)

2
0
1

 =

4
0
2


For both of these eigenvectors we see that

Ax = λx.
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Using λ2 = 1 for (A− λI3) in the augmented matrix [(A− λI3) 0]: 4 −6 −6
−1 3 2
3 −6 −5

 =⇒

1 0 −1 0
0 1 1/3 0
0 0 0 0

 =⇒
x1 = x3

x2 = −x3/3
x3 = x3

=⇒ x =

 1
−1/3

1


Verifying:

Ax =

 5 −6 −6
−1 4 2
3 −6 −4

 1
−1/3

1

 =

 1
−1/3

1

 , λx = (1)

 1
−1/3

1

 =

 1
−1/3

1


We have three linearly independent eigenvectors so this matrix is diagonalizable by the Diagonal-
ization Theorem. The diagonal matrix and the matrix made up of the corresponding eigenvectors:

D =

2 0 0
0 2 0
0 0 1

 , P =

2 2 1
1 0 −1/3
0 1 1

 =⇒ P−1 =

−1 3 2
3 −6 −5
−3 6 6


Confirming that PDP−1 = A. Start with PD.

PD =

2 2 1
1 0 −1/3
0 1 1

2 0 0
0 2 0
0 0 1



=

 2(2) + 2(0) + 1(0) 2(0) + 2(2) + 1(0) 2(0) + 2(0) + 1(1)
1(2) + 0(0) + (−1/3)(0) 1(0) + 0(2) + (−1/3)(0) 1(0) + 0(0) + (−1/3)(1)

0(2) + 1(0) + 1(0) 0(0) + 1(2) + 1(0) 0(0) + 1(0) + 1(1)



=

4 + 0 + 0 0 + 4 + 0 0 + 0 + 1
2 + 0 + 0 0 + 0 + 0 0 + 0 + (−1/3)
0 + 0 + 0 0 + 2 + 0 0 + 0 + 1

 =

4 4 1
2 0 −1/3
0 2 1


Finally, PDP−1.

PDP−1 =

4 4 1
2 0 −1/3
0 2 1

−1 3 2
3 −6 −5
−3 6 6



=

 4(−1) + 4(3) + 1(−3) 4(3) + 4(−6) + 1(6) 4(2) + 4(−5) + 1(6)
2(−1) + 0(3) + (−1/3)(−3) 2(3) + 0(−6) + (−1/3)(6) 2(2) + 0(−5) + (−1/3)(6)

0(−1) + 2(3) + 1(−3) 0(3) + 2(−6) + 1(6) 0(2) + 2(−5) + 1(6)



=

−4 + 12 + (−3) 12 + (−24) + 6 8 + (−20) + 6
−2 + 0 + 1 6 + 0 + (−2) 4 + 0 + (−2)

0 + 6 + (−3) 0 + (−12) + 6 0 + (−10) + 6

 =

 5 −6 −6
−1 4 2
3 −6 −4

 = A

And we have confirmed that PDP−1 = A.
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4.8. Finding the SVD (singular value decomposition) of:

A =

[
3 2 2
2 3 −2

]
.

That is, we are going to find a decompostion UΣV T = A. Following the instructions laid out in
the text book, there are three steps:

1. V : Right-singular vectors. We calculate ATA which gives us a square matrix. We calculate
the eigenvalues and eigenvectors as we do for normal diagonalization, except we only use
orthonormal eigenvectors which will make up the columns of V . Remember to TRANSPOSE!

2. Σ: Singular matrix. The singular values are the square roots of the eigenvalues found in
step 1. Note that the singular matrix must have the same form as the original matrix A with
the singular values on the diagonal.

3. U : Left-singular vectors. The columns of U are calculated with the equation:

ui =
1

σi
Avi.

Comment : This method is how we calculate it by hand. It is done differently in a computer (due
to certain difficulties with matrix calculations such as poor approximations and rounding errors).

We calculate the matrix ATA (and call it W for short):

W = ATA =

3 2
2 3
2 −2

[3 2 2
2 3 −2

]
=

13 12 2
12 13 −2
2 −2 8

 =⇒ (W−λI3) =

13− λ 12 2
12 13− λ −2
2 −2 8− λ


Characteristic polynomial.

p(λ) = det(W − λI3) = −x3 + 34x2 − 225x = x(x− 25)(x− 9)

The roots are λ1 = 25, λ2 = 9 and λ3 = 0.

Using λ1 = 25 for (W − λI3) in the augmented matrix [(W − λI3) 0]:−12 12 2
12 −12 −2
2 −2 −17

 =⇒

1 −1 0 0
0 0 1 0
0 0 0 0

 =⇒
x1 = x2

x2 = x2

x3 = 0
=⇒ x =

1
1
0


Using λ2 = 9 for (W − λI3) in the augmented matrix [(W − λI3) 0]: 4 12 2

12 4 −2
2 −2 −1

 =⇒

1 0 −1/4 0
0 1 1/4 0
0 0 0 0

 =⇒
x1 = 1
x2 = −1
x3 = 4

=⇒ x =

 1
−1
4


Using λ3 = 0 for (W − λI3) in the augmented matrix [(W − λI3) 0]:13 12 2

12 13 −2
2 −2 8

 =⇒

1 0 2 0
0 1 −2 0
0 0 0 0

 =⇒
x1 = −2x3

x2 = 2x3

x3 = x3

=⇒ x =

−2
2
1


Any symmetric matrix is always diagonalizable, and W = ATA is symmetric, so these eigenvectors
must be linearly independent. Also note that all eigenvalues are squares!

64



Let us call the eigenvectors x1, x2 and x3. We need to translate them into an orthonormal basis.
We first check if they are orthogonal:

x1x2 = 0, x1x3 = 0, x2x3 = 0

Then we make them orthonormal using the dot product. Calculating the length of each vector.

‖x1‖ =
√

12 + 12 + 0 =
√

2

‖x2‖ =
√

12 + (−1)2 + 42 =
√

18 = 3
√

2

‖x3‖ =
√

(−2)2 + 22 + 12 =
√

9 = 3

Creating an orthonormal basis (ONB).

v1 =
1

‖x1‖
x1 =

1/
√

2

1/
√

2
0


v2 =

1

‖x2‖
x2 =

 1/3
√

2

−1/3
√

2

4/3
√

2


v3 =

1

‖x3‖
x3 =

−2/3
2/3
1/3


These are the columns of the right-singular matrix.

V =

1/
√

2 1/3
√

2 −2/3

1/
√

2 −1/3
√

2 2/3

0 4/3
√

2 1/3

 =⇒ V T =

 1/
√

2 1/
√

2 0

1/3
√

2 −1/3
√

2 4/3
√

2
−2/3 2/3 1/3


Finding the singular matrix is quite straightforward: square root of the eigenvalues across the
diagonal. Since rank(A) = 2 there are only 2 nonzero singular values.

Σ =

[
5 0 0
0 3 0

]
All that remains is finding the columns of U . Recall the formula:

ui =
1

σi
Avi.

Since A is a 2 × 3 matrix, this means U is a 2 × 2 matrix, so we only have to calculate it for the
nonzero singular values.

u1 =
1

σ1
Av1 =

1

5

[
3 2 2
2 3 −2

]1/
√

2

1/
√

2
0

 =
1

5

[
5/
√

2

5/
√

2

]
=

[
1/
√

2

1/
√

2

]

u2 =
1

σ2
Av2 =

1

3

[
3 2 2
2 3 −2

] 1/3
√

2

−1/3
√

2

4/3
√

2

 =
1

3

[
9/3
√

2

−9/3
√

2

]
=

[
1/
√

2

−1/
√

2

]
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This gives us the matrix U .

U =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]
Now putting it all together and checking that we get back A:

UΣV T =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [
5 0 0
0 3 0

] 1/
√

2 1/
√

2 0

1/3
√

2 −1/3
√

2 4/3
√

2
−2/3 2/3 1/3



=

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [
5/
√

2 5/
√

2 0

1/
√

2 −1/
√

2 4/
√

2

]

=

[
3 2 2
2 3 −2

]

= A

This confirms that the calculations are correct.

4.9. Finding the singular value decomposition (SVD) of

A =

[
2 2
−1 1

]
Square matrices that are symmetric and positive-definite have the property that the regular di-
agonalization and the SVD are equal. This matrix is not symmetric, so we have to do the full
calculations. To simplify the notation a bit, we set W = ATA.

W = ATA =

[
8 0
0 2

]
=⇒ (W − λI2) =

[
8− λ 0

0 2− λ

]
Finding the characteristic polynomial.

det(W − λI2) =

∣∣∣∣8− λ 0
0 2− λ

∣∣∣∣ = (8− λ)(2− λ) =⇒ λ1 = 8, λ2 = 2

Using λ1 = 8 for (W − λI3) in the augmented matrix [(W − λI3) 0]:[
0 0
0 −6

]
=⇒

[
0 1 0
0 0 0

]
=⇒ x1 = x1

x2 = 0
=⇒ x =

[
1
0

]

Using λ2 = 2 for (W − λI3) in the augmented matrix [(W − λI3) 0]:[
6 0
0 0

]
=⇒

[
1 0 0
0 0 0

]
=⇒ x1 = 0

x2 = x2
=⇒ x =

[
0
1

]
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These eigenvectors, x1, x2 are orthonormal, so we can set:

v1 = x1

v2 = x2

Which gives us the matrix V .

V =

[
1 0
0 1

]
=⇒ V T =

[
1 0
0 1

]
The singular value matrix contains the square root of the eigenvalues.

Σ =

[
2
√

2 0

0
√

2

]
Finally we calculate the columns of U .

u1 =
1

σ1
Av1 =

1

2
√

2

[
2 2
−1 1

] [
1
0

]
=

1

2
√

2

[
2
−1

]
=

[
1/
√

2

−1/2
√

2

]
u2 =

1

σ2
Av2 =

1√
2

[
2 2
−1 1

] [
0
1

]
=

1√
2

[
2
1

]
=

[
2/
√

2

1/
√

2

]
From these we construct U .

U =

[
1/
√

2 2/
√

2

−1/2
√

2 1/
√

2

]
Confirming our calculations.

UΣV T =

[
1/
√

2 2/
√

2

−1/2
√

2 1/
√

2

] [
2
√

2 0

0
√

2

] [
1 0
0 1

]

=

[
1/
√

2 2/
√

2

−1/2
√

2 1/
√

2

] [
2
√

2 0

0
√

2

]

=

[
2 2
−1 1

]

= A
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4.10. Finding the rank-1 approximation.

A =

[
3 2 2
2 3 −2

]
As explained in the text book, we can find the rank-1 matrix with the following formula:

A1 = u1v
T
1 .

The terminology is a little confusing. We are interested in the rank-k approximation for k = 1
which is this:

Â = σ1u1v
T
1 .

A is the same matrix as we used in exercise 4.8, so we can borrow the vectors we found in order to
do the calculations.

Â = σ1u1v
T
1 = (5)

[
1/
√

2

1/
√

2

] [
1/
√

2 1/
√

2 0
]

= (5)

[
(1/
√

2)(1/
√

2) (1/
√

2)(1/
√

2) (1/
√

2)(0)

(1/
√

2)(1/
√

2) ((1/
√

2)1/
√

2) (1/
√

2)(0)

]

= (5)

[
1/2 1/2 0
1/2 1/2 0

]

=

[
2.5 2.5 0
2.5 2.5 0

]
This matrix is a very crude approximation of A.
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4.11.
Before moving on to the main exercise, we will prove a lemma that we will need.

Lemma. For a matrix A ∈ Rm×n, rank(ATA) = rank(A).

Proof.
Assuming we have some matrix A ∈ Rm×n. First we will prove that ATA and A have the same
kernel.
⊂). Assume x ∈ ker(A). Then:

Ax = 0

ATAx = AT0

ATAx = 0

Since ATAx = 0 this means that x ∈ ker(ATA) which means ker(A) ⊂ ker(ATA).

⊃) Assume now that x ∈ ker(ATA). Then:

ATAx = 0

xTATAx = xT0

xTATAx = 0

(Ax)TAx = 0

‖Ax‖2 = 0 († - see notes)

Ax = 0

Since Ax = 0 this means that x ∈ ker(A) which means ker(ATA) ⊂ ker(A). By inclusion both
ways, we can conclude that ker(A) = ker(ATA).

Both A and ATA map into Rn. (Columns are input and rows correspond to image/range, which
is Rn for both matrices). Let’s say that dim(ker(A)) = k for some k ≤ min(m,n) and by what we
just showed, dim(ker(ATA)) = k. By the rank-nullity theorem:

dim(Rn) = n = rank(A) + dim(ker(A)) = rank(A) + k

dim(Rn) = n = rank(ATA) + dim(ker(ATA)) = rank(ATA) + k

So:
rank(A) + k = rank(ATA) + k =⇒ rank(A) = rank(ATA)

which shows that rank(A) = rank(ATA). �
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Regarding (†). We multiply a m×n matrix with a n× 1 vector, we end up with a m× 1 vector, so:

Ax =

a1

...
am

 , (Ax)T =
[
a1 · · · am

]
.

When we multiply them:

(Ax)TAx =
[
a1 · · · am

] a1

...
am

 = (a1)2 + . . .+ (am)2 = ‖Ax‖2.

Since all the elements are squared and added, it can only be 0 when all values are 0, hence Ax = 0.

Corollary. The rank of a symmetric matrix A equals the number of nonzero eigenvalues.

Proof. Will not prove this, can be found in various linear algebra text books. Maybe later...
Now we go to the main exercise.

Claim: For any A ∈ Rm×n the matrices ATA and AAT possess the same nonzero eigenvalues.

Proof.
Assume A is an m × n matrix with rank(A) = k for some k ∈ N and 1 ≤ k ≤ min(m,n). From A
we can create the matrices ATA and AAT which are both symmetric (i.e. it is its own transpose):

(ATA)T = AT (AT )T = ATA

(AAT )T = (AT )TAT = AAT

By the Lemma we proved above (we can set B := AT and use the Lemma on B and BTB = AAT ):

rank(A) = k = rank(ATA) = rank(AAT ).

For our matrices ATA has rank of k and therefore k nonzero eigenvalues, by the unproven
corollary. The same is true for AAT . In other words ATA and AAT have the same number of
nonzero eigenvalues.

Finally we must show that they have the same eigenvalues. Assume λ 6= 0 is an eigenvalue for
ATA with the corresponding eigenvector x ∈ Rn. Define Rm 3 y := Ax. We have:

ATAx = λx

AATAx = Aλx = λAx

AATy = λy

Which shows that λ is an eigenvalue for AAT with corresponding eigenvector y. We can also show
the reverse for some eigenvalue γ 6= 0 for AAT with eigenvector x ∈ Rm. Define Rn 3 y := ATx.

AATx = γx

ATAATx = AT γx = γATx

ATAy = γy

which means γ is an eigenvalue for ATA. In conclusion we have shown that AAT and ATA have
the same nonzero eigenvalues. �
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4.12.
Showing that for x 6= 0, Theorem 4.24 holds. That is,

max
x

‖Ax‖
‖x‖

= σ1,

where σ1 is the largest singular value of A ∈ Rm×n. (Not using the ‖ · ‖2 notation.)

Proof.
This can be verified by using the SVD and making some clever observations. By the SVD we
can write A = UΣV T . Since U and V are orthonormal matrices, they have the property that
V T = V −1, so UTU = I and V V T = I. (Also using that (V T )T = V without mention).

For reasons that will become clear, we will define y := V Tx. Note then that:

‖y‖2 = yTy = (V Tx)TV Tx = xTV V Tx = xTx = ‖x‖2.

We will also use the following:

ATA = (UΣV T )TUΣV T

= V ΣTUTUΣV T

= V ΣT ΣV T

= V SV T , (♣)

where we define S to be the symmetric n× n matrix (empty spaces are 0s):

S =

σ
2
1

. . .

σ2
n


The dimensions are n × n because A is an m × n matrix, which means Σ is an m × n matrix, ΣT

is an n×m matrix and ΣT Σ becomes an n× n matrix.
Observe now that:

‖Ax‖2 = (Ax)TAx

= xTATAx

= xTV SV Tx (♣)

= yTSy

(Continues on next page.)
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=
[
y1 . . . yn

] σ
2
1

. . .

σ2
n


y1...
yn



=
[
y1 . . . yn

] σ
2
1y1
...

σ2
nyn



= σ2
1y

2
1 + . . .+ σ2

ny
2
n

≤ σ2
1y

2
1 + . . .+ σ2

1y
2
n (Replacing all σ2

i with σ2
1)

= σ2
1(y21 + . . .+ y2n)

= σ2
1‖y‖2

= σ2
1‖x‖2

By these calculations, we have shown that:

‖Ax‖2 ≤ σ2
1‖x‖2 =⇒ ‖Ax‖ ≤ σ1‖x‖ =⇒ ‖Ax‖

‖x‖ ≤ σ1

We can avoid the inequality by selecting:

x =

1
...
0

 =⇒ y =

1
...
0

 ,
which specifically targets σ1 and which then gives us equality. Hence we have shown that:

max
x

‖Ax‖
‖x‖ = σ1 �
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Chapter 5: Vector Calculus - Exercises

5.1. Computing the derivative for
f(x) = log(x4) sin(x3).

This is a combination of the product rule, (uv)′ = u′v + uv′, and the chain rule.

f ′(x) =

(
1

x4

)
4x3 sin(x3) + log(x4) cos(x3)3x2

=
4 sin(x3)

x
+ 3x2 log(x4) cos(x3)

5.2. Computing the derivative of the logistic sigmoid.

f(x) =
1

1 + exp(−x)
.

This is differentating with the quotient rule:(u
v

)′
=
u′v − uv′

v2
.

Finding the derivative:

f ′(x) =
(0)(1 + e−x)− (1)(−e−x)

(1 + e−x)2

=
e−x

1 + 2e−x + e−2x

5.3. Finding the derivative of a function similar to the Gaussian pdf. Rewriting the expression a bit. This
is the chain rule twice.

f(x) = exp

(
− 1

2σ2
(x− µ)2

)

f ′(x) = exp

(
− 1

2σ2
(x− µ)2

)(
− 1

2σ2
(2x− 2µ)

)
= exp

(
− 1

2σ2
(x− µ)2

)(
− 1

σ2
(x− µ)

)
Alternative form:

f ′(x) = −
(x− µ) exp

(
− 1

2σ2 (x− µ)2
)

σ2

Another alternatve:

f ′(x) =
µ− x
σ2

exp

(
− 1

2σ2
(x− µ)2

)
=
µ− x
σ2

f(x)
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5.4 Computing the Taylor polynomials Tn for n = 0, . . . , 5 at x0 = 0 for the function:

f(x) = sin(x) + cos(x).

Recalling the general Taylor polynomial form (Definition 5.3):

Tn(x) :=

n∑
k=0

f (k)(x0)

k!
(x− x0)k.

• n = 0.
T0(x) = f(0)(x)0 = (sin(0) + cos(0))x = 1

• n = 1.

T1(x) = T0 + f ′(0)(x)1

= T0(x) + (cos(0)− sin(0))x

= 1 + x

• n = 2.

T2(x) = T1(x) +
f ′′(0)

2!
(x)2

= T1(x) +
(− sin(0)− cos(0))

2
x2

= 1 + x− x2

2

• n = 3.

T3(x) = T2(x) +
f ′′′(0)

3!
(x)3

= T2(x) +
(− cos(0) + sin(0))

6
x3

= 1 + x− x2

2
− x3

6

• n = 4.

T4(x) = T3(x) +
f (4)(0)

4!
(x)4

= T3(x) +
(sin(0) + cos(0))

24
x4

= 1 + x− x2

2
− x3

6
+
x4

24

• n = 5.

T5(x) = T4(x) +
f (5)(0)

5!
(x)5

= T4(x) +
(cos(0)− sin(0))

120
x5

= 1 + x− x2

2
− x3

6
+
x4

24
+

x5

120
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5.5. For each function we will determine:
(a) The dimension of ∂f

∂x
.

(b) The Jacobian.

Function:
f1(x) = sin(x1) cos(x2)

a.

Writing the derivative in vector form:
∂f1
∂x

=
[
∂f1
∂x1

∂f1
∂x2

]
so the dimension of ∂f1

∂x
is (1× 2) since there is one function f1 and two variables.

b.

Before calculating the Jacobian, we differentiate the functions f1 wrt. each variable.

∂

∂x1
sin(x1) cos(x2) = cos(x1) cos(x2)

∂

∂x2
sin(x1) cos(x2) = − sin(x1) sin(x2)

Collecting the terms in a matrix, as per Definition 5.6 (or Example 5.7).

J =
[
cos(x1) cos(x2) − sin(x1) sin(x2)

]
Function:

f2(x) = xTy = x1y1 + . . .+ xnyn

where x,y ∈ Rn.
a.

Writing the derivative in vector form:

∂f2
∂x

=
[
∂f2
∂x1

. . . ∂f2
∂xn

]
.

In this case we also have one function f2, but n variables, so the dimension is (1× n).
b.

Differentiating the functions f2 wrt. each variable xi.

∂

∂x1

(
x1y1 + . . .+ xnyn

)
= y1

...
...

∂

∂xn

(
x1y1 + . . .+ xnyn

)
= yn

Collecting the terms in a matrix.
J =

[
y1 . . . yn

]
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Function:

f3(x) = xxT =


x21 x1x2 . . . x1xn
x1x2 x22 . . . x2xn

...
. . .

x1xn x2xn . . . x2n


where x ∈ Rn.
a.

Writing the derivative:

∂f3
∂x

=


∂f3
∂xi

=


∂
∂xi

x21
∂
∂xi

x1x2 . . . ∂
∂xi

x1xn
∂
∂xi

x1x2
∂
∂xi

x22 . . . ∂
∂xi

x2xn
...

. . .
∂
∂xi

x1xn
∂
∂xi

x2xn . . . ∂
∂xi

x2n

 : 1 ≤ i ≤ n

 .

For every xi in x, we differentiate the (n× n) matrix wrt. xi and create a tensor gradient, with dimension
(n× n× n).
b.

Differentiating wrt. each variable xi to get the Jacobian tensor which is illustrated below. Each matrix
in the tensor will contain the calculated derivatives listed above. For instance, for x2 we get the following
matrix - which is the second layer in the illustration:

∂f3
∂x2

=


0 x1 . . . 0
x1 2x2 . . . xn
...

. . .

0 xn . . . 0

 .
Illustration of the Jacobian tensor, where we have included ∂f3

∂x1
, ∂f3
∂x2

and ∂f3
∂xn

:

0 0 · · · x1

0 0 · · · x2

. . .

· · · 2xn

0 x1 · · · 0

xn

0

2x1 x2 · · · xn

x2 0 · · · 0

...
. . .

xn 0 · · · 0
n

n

. .
.

. .
.

n
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To make the last exercise a bit easier to understand, we will solve it again for a much simpler example.
Take the same function, but with x ∈ R2:

f(x) = xxT =

[
x21 x1x2
x1x2 x22

]
Now, the derivative becomes just two matrices:

df

dx
=

{
∂f

∂x1
=

[
∂
∂x1

x21
∂
∂x1

x1x2
∂
∂x1

x1x2
∂
∂x1

x22

]
=

[
2x1 x2
x2 0

]
,

∂f

∂x2
=

[
∂
∂x2

x21
∂
∂x2

x1x2
∂
∂x2

x1x2
∂
∂x2

x22

]
=

[
0 x1
x1 2x2

]}

These will also make a tensor, but only a (2× 2× 2) tensor.

Layer 1 =

[
2x1 x2
x2 0

]

Layer 2 =

[
0 x1
x1 2x2

]

5.6. Differentiating the function f wrt. t and g wrt. to X where:

f(t) = sin(log(tT t)), t ∈ RD

g(X) = tr(AXB), A ∈ RD×E ,X ∈ RE×F ,B ∈ RF×D,

where tr(·) denotes the trace of a matrix (sum of the diagonal elements).

Since t ∈ RD:
tT t = t21 + t22 + . . .+ t2D.

Differentiating f will give us a vector:

df

dt
=

[
∂f

∂t1

∂f

∂t2
. . .

∂f

∂tD

]
Calculating for t1 with the chain rule:

∂f

∂t1
=

∂

∂t1

(
sin(log(t21 + t22 + . . .+ t2D))

)
= cos(log(tT t)) · 1

tT t
2t1 =

2t1 cos(log(tT t))

tT t

Similarly, for 1 ≤ i ≤ D:
∂f

∂ti
=

2ti cos(log(tT t))

tT t

Which results in:

df

dt
=

[
2t1 cos(log(tT t))

tT t

2t2 cos(log(tT t))

tT t
. . .

2tD cos(log(tT t))

tT t

]
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We have the matrix A ∈ RD×E , X ∈ RE×F and B ∈ RF×D, where:

X =


x11 x12 . . . x1F
x21 x22 . . . x2F

...
. . .

xE1 xE2 . . . xEF

 .
By matrix multiplication, AXB ∈ RD×D, so it is a square matrix which is required for the trace. If we
define the diagonal elements to be di for 1 ≤ i ≤ D. Then the trace will give:

trace(AXB) =

D∑
i=1

di ∈ R

Before we continue, let us do the calculations for a simplified case. Let’s set:

X =

[
x11 x12
x21 x22

]
, A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
By doing the matrix multiplications and summing the diagonal elements (see Appendix for the calcula-
tions), we find that:

trace(AXB) = a11b11x11 + a11b21x12 + a12b11x21 + a12b21x22

+ a21b12x11 + a21b22x12 + a22b12x21 + a22b22x22

Since the trace is a real number with dimension (1×1), we know that dg
dX

will have dimensions (1×1)×(2×2),
which just becomes a 2× 2 matrix. Now, we write out all the derivatives we need for the gradient.

dg

dX
=

{
∂trace(AXB)

∂xij
: 1 ≤ i ≤ 2, 1 ≤ j ≤ 2

}
Calculating the individual partial derivatives.

∂trace(AXB)

∂x11
= a11b11 + a21b12

∂trace(AXB)

∂x12
= a11b21 + a21b22

∂trace(AXB)

∂x21
= a12b11 + a22b12

∂trace(AXB)

∂x22
= a12b21 + a22b22

Which means:

dg

dX
=

[
a11b11 + a21b12 a11b21 + a21b22
a12b11 + a22b12 a12b21 + a22b22

]
=

[
a11 a21
a12 a22

] [
b11 b21
b12 b22

]
= ATBT (‡)

This works since all matrices are squares. But this still works in the general case since AT ∈ RE×D and
BT ∈ RD×F so ATBT ∈ RE×F which will have the same dimension as X.
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Returning to the main exercise. We need to find a complete expression for the trace, which is a bit involved,
but also some good repetition of some linear algebra theory.

Let us start by defining W := XB. From standard matrix multiplication we can write out the expression
for wij the element of W on row i and column j. It is:

wij =

F∑
k=1

xikbkj . (♦)

(Which also shows that wij is the inner product of row i from X and column j from B).
Now we define P := AW = A(XB). By standard matrix multiplication:

pij =

E∑
k=1

aikwkj

=

E∑
k=1

aik

F∑
k′=1

xkk′bk′j (♦)

=

E∑
k=1

F∑
k′=1

aikxkk′bk′j

(We can move the term aik in to the sum because it is independent of the index k′). Recall that we need
the trace, which is all elements on the diagonal of P, or in other words all elements where i = j. We are
also going to sum these elements up, so we get an explicit expression for the trace like this:

trace(AXB) =

D∑
d=1

pdd =

D∑
d=1

E∑
k=1

F∑
k′=1

adkxkk′bk′d

(By setting D = 2, E = 2 and F = 2, we can see that this expression recreates the trace from the simplified
example.) Since the trace is a real number with dimension (1× 1), we know that dg

dX
will have dimensions

(1× 1)× (E × F ), which just becomes an E × F matrix. Now, we write out all the derivatives we need for
the gradient.

dg

dX
=

{
∂trace(AXB)

∂xij
: 1 ≤ i ≤ E, 1 ≤ j ≤ F

}
Next we calculate the individual derivatives. Whenever the xij we are differentiating on is NOT in the
term, the derivative becomes 0, which eliminates a lot of the terms in the sums. First when differentiating
wrt. x11, only the terms where k = 1 and k′ = 1 are kept since all others become 0. Then we can remove
two of the sums:

∂trace(AXB)

∂x11
=

D∑
d=1

ad1b1d

And in the more general case when differentiating wrt. xij :

∂trace(AXB)

∂xij
=

D∑
d=1

adibjd

When comparing this to (♦) we see that the rows and columns for i, j have switched, and recalling the
simplified example in (‡) we conclude that dg

dX
= ATBT ∈ RE×F .
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5.7.
Finding the derivatives df/dx by using the chain rule. Also describing the dimension of all partial derivatives.

a.

The function:
f(z) = log(1 + z), z = xTx, x ∈ RD.

Finding z expressed in xi.
z = xTx = x21 + x22 + . . .+ x2D

This derivative can be calculated by using the chain rule like this:

df

dx
=

∂f

∂z

∂z

∂x

In this case: ∂f/∂z has dimension (1× 1) and ∂z/∂x has dimension (1×D). Calculating the derivatives.

∂f

∂z
=

∂

∂z

(
log(1 + z)

)
=

1

1 + z

Calculating the derivative for a specific xi.

∂z

∂xi
=

∂

∂xi

(
x21 + x22 + . . .+ x2D

)
= 2xi

When differentiating over the vector x we have the same pattern.

∂z

∂x
=
[
2x1 2x2 . . . 2xD

]
Putting it all together:

df

dx
=

∂f

∂z

∂z

∂x
=

1

1 + z

[
2x1 2x2 . . . 2xD

]
=
[ 2x1

1 + z

2x2
1 + z

. . .
2xD
1 + z

]
b.

The function:
f(z) = sin(z), z = Ax + b

where A ∈ RE×D, x ∈ RD, b ∈ RE . From the matrix multiplication we see that z ∈ RE , and as stated the
sinus function is used on all elements in the column vector. So:

f(z) = sin(z) =


sin(z)
sin(z)

...
sin(z)

 =


sin(z1)
sin(z2)

...
sin(zE)

 .
As in equation (5.54) we have a vector valued function. We have to calculate the derivative in each row for
all zi as shown in (5.56). We keep the E rows and get E columns of partial derivatives. From this we can
see that ∂f/∂z has dimensions (E × E).
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Writing out the expression for z explicitly.

z = Ax + b

=


a11 a12 · · · a1D
a21 a22 · · · a2D
...

. . .

aE1 aE2 · · · aED



x1
x2
...
xD

+


b1
b2
...
bE



=


a11x1 + a12x2 + · · ·+ a1DxD
a21x1 + a22x2 + · · ·+ a2DxD

...
aE1x1 + aE2x2 + · · ·+ aEDxD

+


b1
b2
...
bE



=


a11x1 + a12x2 + · · ·+ a1DxD + b1
a21x1 + a22x2 + · · ·+ a2DxD + b2

...
aE1x1 + aE2x2 + · · ·+ aEDxD + bE



=


g1(x)
g2(x)

...
gE(x)


Since z ∈ RD and x ∈ RE , the derivative ∂z/∂x will have dimensions (E × D) (we keep the E columns,
but add one column per derivative of xi).

By the chain rule:
df

dx
=

∂f

∂z

∂z

∂x

Calculating the derivatives:

∂f

∂z
=


∂
∂z1

sin(z1) ∂
∂z2

sin(z1) . . . ∂
∂zE

sin(z1)
∂
∂z1

sin(z2) ∂
∂z2

sin(z2) . . . ∂
∂zE

sin(z2)

...
∂
∂z1

sin(zE) ∂
∂z2

sin(zE) . . . ∂
∂zE

sin(zE)

 =


cos(z1) 0 . . . 0

0 cos(z2) . . . 0
...

. . .

0 0 . . . cos(zE)


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For the next derivative, let us consider a specific case:

∂z2
∂x3

=
∂g2
∂x3

=
∂

∂x3

(
a21x1 + a22x2 + a23x3 + · · ·+ a2DxD + b2

)
= a23

This lets us see the general pattern:
∂zi
∂xj

=
∂gi
∂xj

= aij

The full derivative becomes, when using the temporary g(·) we used earlier:

∂z

∂x
=


∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xD

∂g2
∂x1

∂g2
∂x2

· · · ∂g2
∂xD

...
. . .

∂gE
∂x1

∂gE
∂x2

· · · ∂gE
∂xD

 =


a11 a12 · · · a1D
a21 a22 · · · a2D

· · ·
. . .

aE1 aE2 · · · aED

 = A

Putting it all together:

df

dx
=

∂f

∂z

∂z

∂x
=


cos(z1) 0 . . . 0

0 cos(z2) . . . 0
...

. . .

0 0 . . . cos(zE)

A

5.8. Computing the derivatives df/dx, and providing dimensions of partial derivatives.

a.

The function:

f(z) = exp

(
−1

2
z

)
z = g(y) = yTS−1y

y = h(x) = x− µ

where y,x,µ ∈ RD and S ∈ RD×D. Also note that z ∈ R.
Writing out y explicitly.

y = x− µ =


h1(x)
h2(x)

...
hD(x)

 =


x1 − µ1

x2 − µ2

...
xD − µD


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Writing out z explicitly. (Note that we use the sii for the inverted matrix S−1).

z = yTS−1y

=
[
y1 y2 . . . yD

]

s11 s12 . . . s1D
s21 s22 . . . s2D
...

. . .

sD1 sD2 . . . sDD



y1
y2
...
yD



=
[
y1 y2 . . . yD

]

s11y1 + s12y2 + . . .+ s1DyD
s21y1 + s22y2 + . . .+ s2DyD

...
sD1y1 + sD2y2 + . . .+ sDDyD



= s11y
2
1 + s12y1y2 + . . .+ s1Dy1yD

+ s21y1y2 + s22y
2
2 + . . .+ s2Dy2yD + . . .

+ sD1y1yD + sD2y2yD + . . .+ sDDy
2
D

We can calculate the derivate with the following chain:

df

dx
=

∂f

∂z

∂z

∂y

∂y

∂x

Finding the partial derivatives and their dimension.

∂f

∂z
=

∂

∂z

(
exp

(
−1

2
z

))
= −1

2
exp

(
−1

2
z

)
Since z is a real number, this has (1× 1) dimensions.

Now to calculate ∂z/∂y. We differentiate z wtr. all yi so it will become a row vector with dimension
(1×D).

∂z

∂y
=
[ ∂z
∂y1

∂z

∂y2
. . .

∂z

∂yD

]
Let us first differentiate for a specific value y1 to see the pattern.

∂z

∂y1
= 2s11y1 + s12y2 + . . .+ s1DyD + s21y2 + . . .+ sD1yD

= 2s11y1 + y2(s12 + s21) + . . .+ yD(s1D + sD1)

=

D∑
k=1

yk(s1k + sk1)

So the diagonal value gets a 2, and we keep row 1 and column 1. The general pattern is:

∂z

∂yi
=

D∑
k=1

yk(sik + ski)
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Writing out the full derivative.

∂z

∂y
=

[ D∑
k=1

yk(s1k + sk1) . . .

D∑
k=1

yk(sik + ski) . . .

D∑
k=1

yk(sDk + skD)

]

Finally, the last partial derivative, ∂y/∂x. We differentiate all values in vector y ∈ RD by all values in
x ∈ RD so we will get a (D ×D) matrix. Starting with a specific value.

∂h1

∂x1
=

∂

∂x1

(
x1 + µ1

)
= 1

And in the first row, we will only get 0 in all other columns. Now, the full matrix.

∂y

∂x
=


∂h1
∂x1

∂h1
∂x2

· · · ∂h1
∂xD

∂h2
∂x1

∂h2
∂x2

· · · ∂h2
∂xD

...
. . .

∂hD
∂x1

∂hD
∂x2

· · · ∂hD
∂xD

 =


1 0 · · · 0
0 1 · · · 0
...

. . .

0 0 · · · 1

 = ID

This becomes the identity matrix. Putting all of this together (and using that the last one is the identity
matrix, and disappears):

df

dx
=

∂f

∂z

∂z

∂y

∂y

∂x

=
∂f

∂z

∂z

∂y

= −1

2
exp

(
−1

2
z

)[ D∑
k=1

yk(s1k + sk1) . . .

D∑
k=1

yk(sDk + skD)

]

b.

Function:
f(x) = trace(xxT + σ2ID)

where x ∈ RD. The trace is the sum of the diagonals.
First we write out xxT explicitly, which is a (D ×D) matrix.

xxT =


x1
x2
...
xD

 [x1 x2 . . . xD] =


x21 x1x2 . . . x1xD
x1x2 x22 . . . x1xD

...
x1xD x2xD . . . x2D


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Next, we add the other matrix.

xxT + σ2ID =


x21 + σ2 x1x2 . . . x1xD
x1x2 x22 + σ2 . . . x1xD

...
x1xD x2xD . . . x2D + σ2


When applying the trace, we get the following:

trace(xxT + σ2ID) = x21 + σ2 + x22 + σ2 + . . .+ x2D + σ2

= x21 + x22 + . . .+ x2D +Dσ2

When finding the derivative, there are no variables we can use the chain rule on, so we differentiate x
directly. Since the trace is a real number, and we differentiate it on every xi we get a (1×D) vector with
partial derivatives. Differentiating on one specific value:

∂f

∂x2
=

∂

∂x2

(
x21 + x22 + . . .+ x2D +Dσ2

)
= 2x2

The complete derivative:

df

dx
=
[ ∂f
∂x1

∂f

∂x2
. . .

∂f

∂xD

]
=
[
2x1 2x2 . . . 2xD

]
= 2xT

c.

In this case we don’t have to calculate the product of the partial derivatives explicitly. The function:

f = tanh(z) ∈ RM

z = Ax + b, x ∈ RN ,A ∈ RM×N ,b ∈ RM .

We have z ∈ RM . Chain of partial derivatives:

df

dx
=
∂f

∂z

∂z

∂x

Notice that ∂z/∂x is the same as in exercise 5.7(b), where we showed:

∂z

∂x
= A.

with dimensions (M ×N). (The calculations are the same, we just have to change the dimensions).
For the first partial derivative (we introduce fi to make later calculations a bit easier):

f(z) = tanh(z) =


tanh(z)
tanh(z)

...
tanh(z)

 =


tanh(z1)
tanh(z2)

...
tanh(zM )

 =


f1(z1)
f2(z2)

...
fM (zM )


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We differentiate the vector on all zi which will give us a (M ×M) matrix. Differentiating on one specific
value:

∂

z1

(
tanh(z1)

)
= sech2(z1)

which will be 0 when differentiating on z2, . . . , zM . Writing out the full derivative:

∂f

∂z
=


∂f1
∂z1

∂f1
∂z2

· · · ∂f1
∂zM

∂f2
∂z1

∂f2
∂z2

· · · ∂f2
∂zM

...
. . .

∂fM
∂z1

∂fM
∂z2

· · · ∂fM
∂zM

 =


sech2(z1) 0 · · · 0

0 sech2(z2) · · · 0
...

. . .

0 0 · · · sech2(zM )


The full derivative:

df

dx
=
∂f

∂z

∂z

∂x

=


sech2(z1) 0 · · · 0

0 sech2(z2) · · · 0
...

. . .

0 0 · · · sech2(zM )

A

5.9. We have the functions:

g(z,ν) = log p(x, z)− log q(z,ν)

z = t(ε,ν)

for differentiable functions p, q, t, and x ∈ RD, z ∈ RE , ν ∈ RF , ε ∈ RG. With the chain rule, we will
compute the gradient

d

dν
g(z,ν).

Replacing z with the function t. The full expression becomes:

g(z,ν) = log p(x, t(ε,ν))− log q(t(ε,ν),ν)

Let’s also set f(w) = log(w). Using that we can split the derivative over subtraction, we get the following
chain:

d

dν
g(z,ν) =

∂f

∂p

∂p

∂t

∂t

∂ν
− ∂f

∂q

∂q

∂t

∂t

∂ν

We can’t really go more into depth since we don’t have any more details on the functions.
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Chapter 6: Probability and Distributions - Exercises

6.1. We have the following bivariate distribution:

y1 0.01 0.02 0.03 0.1 0.1

y2 0.05 0.1 0.05 0.07 0.2

y3 0.1 0.05 0.03 0.05 0.04

x1 x2 x3 x4 x5

a.

Calculating the marginal distribution. First for Y . This amounts to summing up the probabilities for each
yi values, ignoring X.

P (Y = y1) = 0.01 + 0.02 + 0.03 + 0.1 + 0.1 = 0.26

P (Y = y2) = 0.05 + 0.1 + 0.05 + 0.07 + 0.2 = 0.47

P (Y = y3) = 0.1 + 0.05 + 0.03 + 0.05 + 0.04 = 0.27

Note that 0.26 + 0.47 + 0.27 = 1.

Now for X.

P (X = x1) = 0.01 + 0.05 + 0.1 = 0.16

P (X = x2) = 0.02 + 0.1 + 0.05 = 0.17

P (X = x3) = 0.03 + 0.05 + 0.03 = 0.11

P (X = x4) = 0.1 + 0.07 + 0.05 = 0.22

P (X = x5) = 0.1 + 0.2 + 0.04 = 0.34

Note that 0.16 + 0.17 + 0.11 + 0.22 + 0.34 = 1.

b.

Calculating the conditional probabilities P (x|Y = y1) and P (y|X = x3). Starting with P (y|X = x3):

P (Y = y1|X = x3) = 0.03/0.11 ≈ 0.273

P (Y = y2|X = x3) = 0.05/0.11 ≈ 0.454

P (Y = y3|X = x3) = 0.03/0.11 ≈ 0.273

These sum up to 1. Now for X.

P (X = x1|Y = y1) = 0.01/0.26 ≈ 0.036

P (X = x2|Y = y1) = 0.02/0.26 ≈ 0.077

P (X = x3|Y = y1) = 0.03/0.26 ≈ 0.115

P (X = x4|Y = y1) = 0.1/0.26 ≈ 0.385

P (X = x5|Y = y1) = 0.1/0.26 ≈ 0.385

These sum up to 1.
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6.2. We have a mixture of two Gaussian distributions.

0.4N
([

10
2

]
,

[
1 0
0 1

])
+ 0.6N

([
0
0

]
,

[
8.4 2.0
2.0 1.7

])
a.

Computing the marginal distribution for each dimension. This question is closely related to example 6.14.
Making some plots to investigate the distributions. (Code used for plotting can be found in the Appendix).
Here are the individual plots:

Note that the maximum values appear at (10, 1) and (0, 0) for each plot. The first plot shows no pattern
between x and y which is because the variables are not correlated. This is different in the second plot where
it is ’stretched out’. When we combine them with the formula above, we get:
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For a joint Gaussian distribution:

p(x,y) = N
([
µx
µy

]
,

[
Σxx Σxy

Σyx Σyy

])
,

the marginal distribution is also Gaussian and can be computed by applying the sum rule:

p(x) =

∫
p(x,y)dy = N (x|µx,Σxx). (6.68)

By applying this rule for x we get that p(x) is the sum of two univariate Gaussian distributions:

p(x) = 0.4N (10, 1) + 0.6N (0, 8.4)

The same can be done for y (same argument, only with the parameters switched):

p(y) = 0.4N (2, 1) + 0.6N (0, 1.7)

Here is a comparison of the marginal distributions and the 3d plot viewed from the sides.
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b.

The marginal Gaussian distributions above are each the sum of two univariate Gaussian distributions. To
find the mean, we can use Theorem 6.12 from the text book, which tells us that the mean of a weighted
sum of Gaussian distributions, is simply the weighted sum of their means.

µx = 0.4µ1 + 0.6µ2 = 0.4(10) + 0.6(0) = 4

µy = 0.4µ1 + 0.6µ2 = 0.4(2) + 0.6(0) = 0.8

We are asked to find the mean, median and mode for each marginal distribution, and not dimension. One
understanding is that this means for each specific Gaussian, which becomes very simple since mean = mode
= median for Gaussian distributions.

Distribution 1 :⇒ µx1 = modex1 = medianx1 = 10

Distribution 2 :⇒ µx2 = modex2 = medianx2 = 0

Distribution 3 :⇒ µy1 = modey1 = mediany1 = 2

Distribution 4 :⇒ µy2 = modey2 = mediany2 = 0

Another, and more realistic, interpretation is per dimension. This is not possible to solve analytically, so
we must solve it numerically. One possibility is with Monte Carlo simulation. Simulating each marginal
distribution and marking the median in blue:

Based on this, the values are:

p(x) :⇒ medianx = 3.2519

p(y) :⇒ mediany = 0.53023

And we can find the mode (only finding the top one for the multimodel distribution):

p(x) :⇒ modex = 9.9988

p(y) :⇒ modey = 1.330633
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Showing a plot of the distribution with all values highlighted. We are using purple for mean, blue for
median, and green for the mode.

c.

To calculate the mean, we use a generalized version of Theorem 6.12.

µtot = 0.4µ1 + 0.6µ2 = (0.4)

[
10
2

]
+ (0.6)0 =

[
4

0.8

]
For the mode we have to solve it numerically. We just find what coordinates make the maximum SURF

variable, which turns out to be approximately (10, 1).

6.3. We are modelling the success/failure rate of a computer to compile some code by using a Bernoulli
distribution, with some parameter µ ∈ (0, 1):

p(x|µ) = µx(1− µ)1−x, x ∈ {0, 1}.

As described in table 6.2 on page 209 in the text book, we select the Beta distribution as the conjugate prior
to the Bernoulli distribution, which will give us a Beta posterior. The Beta distribution has the following
pdf on the parameter µ:

p(µ|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
µα−1(1− µ)β−1 ∝ µα−1(1− µ)β−1

Following the calculations from example 6.12, we can solve a simplified case of the problem.

p(µ|x) = p(x|µ)p(µ|α, β)

∝ µx(1− µ)1−xµα−1(1− µ)β−1

= µx+α−1(1− µ)β+(1−x)−1

∝ Beta(x+ α, β + (1− x))
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But this is just for a single, specific trial x. We want to find the posterior distribution for N trials:
x1, . . . , xN . For the following calculations we will define:

Z =

N∑
i=1

xi

(which will become the number of compiling successes). Given µ we can write:

p(x1, . . . , xN |µ) ∝ µZ(1− µ)N−Z .

With these simple alterations, we can do the full calculation.

p(µ|x1, . . . , xN ) = p(x1, . . . , xN |µ)p(µ|α, β)

∝ µZ(1− µ)N−Zµα−1(1− µ)β−1

= µZ+α−1(1− µ)β+(N−Z)−1

∝ Beta(Z + α, β + (N − Z))

6.4. Solving the question by using Baye’s formula.
First of all, let us register the coin toss probabilities:

P (H) =
3

5
, P (T ) =

2

5

In bag 1 (H) there are 4 mangos and 2 apples. In bag 2 (T ) there are 4 mangos and 4 apples.
We are going to calculate the probability that we used bag 2 if we get a mango. In other words, the

evidence is a mango, so what is the probability that we chose bag 2, or that we got a T on the coin toss.
In even more precise terms, we are going to calculate P (T |M). From Baye’s formula:

P (T |M) =
P (M |T )P (T )

P (M)

We are missing two of these. The first one is P (M |T ). This is the probability of getting a mango if we are
looking into bag 2, and from the given information this is 2/3. The other probability, P (M |H) is 1/2.

For calculating P (M), we use the total law of probability (where P (H) = P (¬T )):

P (M) = P (M |T )P (T ) + P (M |¬T )P (¬T )

= P (M |T )P (T ) + P (M |H)P (H)

=

(
1

2

)(
2

5

)
+

(
2

3

)(
3

5

)
=

1

5
+

2

5

=
3

5

Now we have everything we need:

P (T |M) =
P (M |T )P (T )

P (M)
=

1

2
· 2

5
3

5

=
1

3

92



6.5. Skipped, for now. I don’t remember much about time series. :)

6.6. Proving a pretty standard identity.

VX [x] = E[(x− µ)2]

= EX [x2 − 2xµ+ µ2]

= EX [x2]− 2µEX [x] + µ2

= EX [x2]− 2µ2 + µ2

= EX [x2]− µ2

= EX [x2]− (EX [x])2 (6.44)

6.7 Showing a second identity. Will use the following formula:

x =
1

N

N∑
k=1

xk =⇒
N∑
k=1

xk = Nx

1

N2

N∑
i=1

N∑
j=1

(xi − xj)2 =
1

N2

N∑
i=1

N∑
j=1

(x2i − 2xixj + x2j )

=
1

N2

N∑
i=1

( N∑
j=1

x2i − 2xi

N∑
j=1

xj +

N∑
j=1

x2j

)

=
1

N2

N∑
i=1

(
Nx2i − 2xiNx+

N∑
j=1

x2j

)

=
1

N2

(
N

N∑
i=1

x2i − 2Nx

N∑
i=1

xi +

N∑
i=1

N∑
j=1

x2j

)

=
1

N2

(
N

N∑
i=1

x2i − 2Nx

N∑
i=1

xi +N

N∑
j=1

x2j

)

=
1

N

( N∑
i=1

x2i +

N∑
j=1

x2j − 2x

N∑
i=1

xi

)

=
1

N

(
2

N∑
i=1

x2i − 2
1

N

N∑
i=1

xi

N∑
i=1

xi

)

= 2

(
1

N

N∑
i=1

x2i −
1

N

N∑
i=1

xi
1

N

N∑
i=1

xi

)

= 2

[
1

N

N∑
i=1

x2i −
( 1

N

N∑
i=1

xi
)2]

(6.45)
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6.8. This is already done in example (6.14). Here is the translation from the standard Bernoulli pdf to the
general exponential form:

p(x|µ) = µx(1− µ)(1−x)

= exp
[
log
(
µx(1− µ)(1−x)

)]
= exp

[
x log(µ) + (1− x) log(1− µ)

]
= exp

[
x log(µ)− x log(1− µ) + log(1− µ)

]
= exp

[
x log

( µ

1− µ

)
+ log(1− µ)

]
= exp

[
x log

( µ

1− µ

)
− (− log(1− µ))

]
= h(x) exp

[
φ(x) · θ −A(θ)

]
Where h(x) = 1, φ(x) = x, and θ = µ

1−µ . Using this θ, we can show:

θ =
µ

1− µ =⇒ µ =
1

1 + exp(−θ)

(which is the sigmoid function). Then, using this, we can show:

A(θ) = − log(1− µ) = log(1 + exp(θ)).

6.9. Doing the same calculations for the Binomial distribution, where the calculations are very similar to
exercise 6.8. Translating from the pdf.

p(x|N,µ) =

(
N

x

)
µx(1− µ)N−x

= exp

[
log
((N

x

)
µx(1− µ)N−x log)

]

= exp

[
log

(
N

x

)
+ x log(µ)− x log(1− µ) +N log(1− µ)

]

= exp

[
log

(
N

x

)]
exp

[
x log

( µ

1− µ

)
+N log(1− µ)

]

=

(
N

x

)
exp

[
x log

( µ

1− µ

)
− (−N log(1− µ))

]
= h(x) exp

[
φ(x) · θ −A(θ)

]
Where we have the following parameters (by using some of the same arguments as above):

h(x) =

(
N

x

)
, φ(x) = x, θ = log

(
µ

1− µ

)
, A(θ) = N log(1 + exp(θ))
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Next, we will find the general exponential form for the Beta distribution. To simplify the notation, we
simply set:

Γ(α, β) :=
Γ(α+ β)

Γ(a)Γ(β)

p(x|α, β) =
Γ(α+ β)

Γ(a)Γ(β)
xα−1(1− x)β−1

= exp
[
log
(

Γ(α, β)xα−1(1− x)β−1
)]

= exp
[
(α− 1) log(x) + (β − 1) log(1− x)− (− log Γ(α, β))

]
= h(x) exp

[
φ(x)Tθ −A(θ)

]
This is the exponential form, with:

h(x) = 1, φ(x) =

[
log(x)

log(1− x)

]
, θ =

[
α− 1
β − 1

]
, A(θ) = − log

Γ(α+ β)

Γ(a)Γ(β)
.

The last step is to multiply the exponential form of the Binomial and Beta distributions and show that the
product is still on the exponential form. We multiply the terms and collect the terms in a suitable way.(

N

x

)
exp

[
x log

( µ

1− µ

)
− (−N log(1− µ))

]
exp

[
(α− 1) log(x) + (β − 1) log(1− x)− (− log Γ(α, β))

]

=

(
N

x

)
exp

[
x log

( µ

1− µ

)
− (−N log(1− µ)) + (α− 1) log(x) + (β − 1) log(1− x)− (− log Γ(α, β))

]

=

(
N

x

)
exp

[
x log

( µ

1− µ

)
+ (α− 1) log(x) + (β − 1) log(1− x)− (− log Γ(α, β)−N log(1− µ))

]
= h(x) exp

[
φ(x)Tθ −A(θ)

]
Where:

h(x) =

(
N

x

)
, φ(x) =

 x
log(x)

log(1− x)

 , θ =

log
(

µ
1−µ

)
α− 1
β − 1

 , A(θ) = − log Γ(α, β)−N log(1− µ)

The general exponential form is still there, showing that this product is still in the exponential family.
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6.10. This result is important for when Bayesian methods are used in e.g. linear regression. When the
likelihood and prior are assumed to be Gaussian, they need to be multiplied.

The product of two Gaussian distributions N (a,A) and N (b,B) is an unnormalized Gaussian distri-
bution cN (c,C), where

C = (A−1 + B−1)−1

c = C(A−1a + B−1b)

c = (2π)−D/2|A + B|−1/2 exp
(
− 1

2
(a− b)T (A + B)−1(a− b)

)
a.

Solving the multiplication by ’completing the square’. First we write out the full form of the multidimen-
sional Gaussian distributions. Assuming x,a,b ∈ RD and A,B ∈ RD×D. In this calculation, | · | is the
determinant.

p(x|a,A) = (2π)−
D
2 |A|−

1
2 exp

(
− 1

2
(x− a)TA−1(x− a)

)
p(x|b,B) = (2π)−

D
2 |B|−

1
2 exp

(
− 1

2
(x− b)TB−1(x− b)

)
This calculation is VERY extensive, so we have to split it into smaller parts. When multiplying, we get
this:

p(x|a,A)p(x|b,B) = N1 exp(W1)N2 exp(W2) = N1N2 exp(W1 +W2)

We will look at each of these separately. Beginning with the exponent W1 + W2. Written out fully and
adding the exponents together:

W1 +W2 = −1

2
(x− a)TA−1(x− a)− 1

2
(x− b)TB−1(x− b)

= −1

2

[
(x− a)TA−1(x− a) + (x− b)TB−1(x− b)

]
= −1

2

[
xTA−1x− xTA−1a− aTA−1x + aTA−1a+

xTB−1x− xTB−1b− bTB−1x + bTB−1b
]

= −1

2

[
xT
(
A−1 + B−1)x− xT

(
A−1a + B−1b

)
−(

aTA−1 + bTB−1)x + aTA−1a + bTB−1b
]

(f)

Before we continue, we can make som changes.

C = (A−1 + B−1)−1 =⇒ C−1 = A−1 + B−1

Writing out the vector c fully:
c = (A−1 + B−1)−1(A−1a + B−1b

)
Remember that the matrices are symmetric, so their sum is also symmetric, and the transpose does not
change the matrices, nor their inverse. Which means we can write the transpose of c as:

cT =
(
aTA−1 + bTB−1)(A−1 + B−1)−1
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With this in mind, we can make these clever replacements (I is the identity matrix):

xT
(
A−1a + B−1b

)
= xT I

(
A−1a + B−1b

)
= xT (A−1 + B−1)︸ ︷︷ ︸

C−1

(A−1 + B−1)−1︸ ︷︷ ︸
C

(
A−1a + B−1b

)
= xT (A−1 + B−1)︸ ︷︷ ︸

C−1

(A−1 + B−1)−1(A−1a + B−1b︸ ︷︷ ︸
c

)
= xTC−1c

(
aTA−1 + bTB−1)x =

(
aTA−1 + bTB−1)Ix

=
(
aTA−1 + bTB−1) (A−1 + B−1)−1︸ ︷︷ ︸

C

(A−1 + B−1)︸ ︷︷ ︸
C−1

x

=
(
aTA−1 + bTB−1)(A−1 + B−1)−1︸ ︷︷ ︸

cT

(A−1 + B−1)︸ ︷︷ ︸
C−1

x

= cTC−1x

Returning to (f) and making the replacements:

= −1

2

[
xT
(
A−1 + B−1)x− xT

(
A−1a + B−1b

)
−(

aTA−1 + bTB−1)x + aTA−1a + bTB−1b
]

(f)

= −1

2

[
xTC−1x− xTC−1c− cTC−1x + aTA−1a + bTB−1b

Completing the square:

= −1

2

[
xTC−1x− xTC−1c− cTC−1x+cTC−1c + aTA−1a + bTB−1b−cTC−1c

]
= −1

2

[
xTC−1(x− c)− cTC−1(x− c) + aTA−1a + bTB−1b− cTC−1c

]
= −1

2

[
(x− c)TC−1(x− c) + aTA−1a + bTB−1b− cTC−1c

]
= −1

2

[
(x− c)TC−1(x− c)

]
− 1

2

[
aTA−1a + bTB−1b− cTC−1c

]
The first term is exactly what we need for the exponent in N (c,C). In order to get the required exponent
in c, we have to rewrite the second exponent a bit further.

We will need the following two results. The first one is a standard property of matrices:

X−1Y−1Z−1 = [ZYX]−1

The second one is a very unobvious equality:

(A−1 + B−1)−1 = B(A + B)−1A

(A−1 + B−1)−1 = A(A + B)−1B

Will not give a formal proof of this, but some justification is needed.
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By using some matrix algebra:

(A + B)−1 = (B + A)−1

=
[
(I + AB−1)B

]−1

=
[
A(A−1 + B−1)B

]−1

= B−1(A−1 + B−1)−1A−1

The last equality follows from the result mentioned above. Now, we can solve the rest as a matrix equation
and derive the equality:

(A + B)−1 = B−1(A−1 + B−1)−1A−1

B(A + B)−1 = (A−1 + B−1)−1A−1

B(A + B)−1A = (A−1 + B−1)−1

The symmetrical case is shown by not switching to (B + A) in the first line. Now, we can continue with
the remainder from the exponent, and we replace the c, cT and C with the original values.

− 1

2

[
aTA−1a + bTB−1b− cTC−1c

]
= −1

2

[
aTA−1a + bTB−1b−

(
aTA−1 + bTB−1) (A−1 + B−1)−1(A−1 + B−1)︸ ︷︷ ︸

=I

(A−1 + B−1)−1(A−1a + B−1b
)]

= −1

2

[
aTA−1a + bTB−1b−

(
aTA−1 + bTB−1)(A−1 + B−1)−1(A−1a + B−1b

)]
To simplify notation, set W = (A−1 + B−1)−1

= −1

2

[
aTA−1a + bTB−1b−

(
aTA−1 + bTB−1)W(

A−1a + B−1b
)]

= −1

2

[
aTA−1a + bTB−1b− aTA−1WA−1a− aTA−1WB−1b− bTB−1WA−1a− bTB−1WB−1b

]
= −1

2

[
aT
(
A−1 −A−1WA−1)a + bT

(
B−1 −B−1WB−1)b− aTA−1WB−1b− bTB−1WA−1a

]
(])

Now we can do some intermediary calculations. Treating each of these four terms separately. Note that we
use (A−1 + B−1)−1 = B(A + B)−1A.(

A−1 −A−1WA−1) =
(
A−1 −A−1(A−1 + B−1)−1A−1)

= A−1(I − (A−1 + B−1)−1A−1)
= A−1(I −B(A + B)−1AA−1)
= A−1(I −B(A + B)−1)
= A−1((A + B)(A + B)−1 −B(A + B)−1)
= A−1(A +���B−B

)
(A + B)−1

= A−1A(A + B)−1

= I(A + B)−1

= (A + B)−1
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Now we use the symmetrical result (A−1 + B−1)−1 = A(A + B)−1B.(
B−1 −B−1WB−1) =

(
B−1 −B−1(A−1 + B−1)−1B−1)

= B−1(I − (A−1 + B−1)−1B−1)
= B−1(I −A(A + B)−1BB−1)
= B−1(I −A(A + B)−1)
= B−1((A + B)(A + B)−1 −A(A + B)−1)
= B−1(B +���A−A

)
(A + B)−1

= B−1B(A + B)−1

= I(A + B)−1

= (A + B)−1

The next cases are a little simpler.

A−1WB−1 = A−1(A−1 + B−1)−1B−1

=
[
B(A−1 + B−1)A

]−1

=
[
B(I + B−1A)

]−1

= (B + A)−1

= (A + B)−1

B−1WA−1 = B−1(A−1 + B−1)−1A−1

=
[
A(A−1 + B−1)B

]−1

=
[
A(A−1B + I)

]−1

= (B + A)−1

= (A + B)−1

All of these terms simplify to (A + B)−1! Returning to the main calculation.

= −1

2

[
aT
(
A−1 −A−1WA−1)a + bT

(
B−1 −B−1WB−1)b− aTA−1WB−1b− bTB−1WA−1a

]
(])

= −1

2

[
aT (A + B)−1a + bT (A + B)−1b− aT (A + B)−1b− bT (A + B)−1a

]
= −1

2

[
aT (A + B)−1(a− b) + bT (A + B)−1b− bT (A + B)−1a

]
= −1

2

[
aT (A + B)−1(a− b)− bT (A + B)−1(a− b)

]
= −1

2
(a− b)T (A + B)−1(a− b)

With this we have finally resolved the exponent of the product.
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Now that we have completed the exponents W1 + W2, we turn our attention to the normalizing factors
N1N2. We will use the following two properties:

|A||B| = |AB|, and |A−1| = 1

|A|

From the simplified equation we defined earlier:

N1N2 =
(

(2π)−
D
2 |A|−

1
2

)(
(2π)−

D
2 |B|−

1
2

)
= (2π)−

D
2 (2π)−

D
2 |A|−

1
2 |B|−

1
2

= (2π)−
D
2 (2π)−

D
2 |C|−

1
2
|A|−

1
2 |B|−

1
2

|C|− 1
2

= (2π)−
D
2 |C|−

1
2 (2π)−

D
2 |A|−

1
2 |C−1|−

1
2 |B|−

1
2

= (2π)−
D
2 |C|−

1
2 (2π)−

D
2 |AC−1B|−

1
2

= (2π)−
D
2 |C|−

1
2 (2π)−

D
2 |A(A−1 + B−1)B|−

1
2

= (2π)−
D
2 |C|−

1
2 (2π)−

D
2 |A + B|−

1
2

With this we have separated N1N2 into the two desired parts. In conclusion, we have showed that:

p(x|a,A)p(x|b,B) = N1 exp(W1)N2 exp(W2) = N1N2 exp(W1 +W2)

= c(2π)−
D
2 |C|−

1
2 exp

{
−1

2
(x− c)TC−1(x− c)

}
and where c is:

c = (2π)−
D
2 |A + B|−

1
2 exp

{
−1

2
(a− b)T (A + B)−1(a− b)

}

b.

For sake of completeness, we will first consider the exponential form of a univariate Gaussian distribution.
There we have:

h(x) =
1√
2π
, φ(x) =

[
x
x2

]
, θ =

[
µ/σ2

−1/σ2

]
, A(θ) =

µ2

2σ2
+ log σ

Will need that e− log σ = 1/elog σ = 1/σ. Then:

h(x) exp
[
φ(x)Tθ −A(θ)

]
=

1√
2π

exp

{
µx

σ2
− x2

2σ2
− µ2

2σ2
− log σ

}
=

1√
2π

exp

{
− 1

2σ2

(
x2 − 2µx+ µ2

)}
exp {− log σ}

=
1√

2πσ2
exp

{
− 1

2σ2

(
x− µ

)2} ∼ N (µ, σ2)
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Here is the general exponential form for a multivariate Gaussian distribution. Will use without deriving it
- that’s too much work! Note the similarities to the univariate exponential form.

h(x) = (2π)−
D
2 , φ(x) =

[
x

vec(xxT )

]
, θ =

[
Σ−1µ

vec(− 1
2
Σ−1)

]
, A(θ) =

1

2
µTΣ−1µ+

1

2
log |Σ|

Here vec(·) turns an (m× n) matrix into a (mn× 1) vector by stacking the columns. We have verified this
in the 2D multivariate case in the Appendix. Writing the two distributions on the exponential form (after
moving the covariance matrix out of the exponent):

p(x|a,A) = (2π)−
D
2 |A|−

1
2 exp

{[
x

vec(xxT )

]T [
A−1a

vec(− 1
2
A−1)

]
− 1

2
aTA−1a

}

p(x|b,B) = (2π)−
D
2 |B|−

1
2 exp

{[
x

vec(xxT )

]T [
B−1b

vec(− 1
2
B−1)

]
− 1

2
bTB−1b

}
If we consider the shorthand version of this as we did in (a), we get:

p(x|a,A)p(x|b,B) = N1 exp(W1)N2 exp(W2) = N1N2 exp(W1 +W2)

Note first that the normalizing factor N1N2 follows the same argument as on the previous page, so all we
need to do is focus on the sum of the exponents. From the inner products we get:[

x
vec(xxT )

]T [
A−1a

vec(− 1
2
A−1)

]
= xTA−1a+ vec(xxT )T vec(−1

2
A−1)

[
x

vec(xxT )

]T [
B−1b

vec(− 1
2
B−1)

]
= xTB−1b+ vec(xxT )T vec(−1

2
B−1)

So if we ignore the exponent and only focus on W1 +W2, we have the following sum:

xTA−1a+ vec(xxT )T vec(−1

2
A−1)− 1

2
aTA−1a+ xTB−1b+ vec(xxT )T vec(−1

2
B−1)− 1

2
bTB−1b

As seen in the simplified example in the Appendix (but not showing formally), we can write:

vec(xxT )T vec(−1

2
A−1) = −1

2
xTA−1x

and,

vec(xxT )T vec(−1

2
B−1) = −1

2
xTB−1x.

For all parts containing A we can use the other rewriting trick we used in the simplified case:

xTA−1a− 1

2
xTA−1x− 1

2
aTA−1a = −1

2

[
xTA−1x− 2xTA−1a− 1

2
aTA−1a

]
= −1

2
(x− a)TA−1(x− a)

The case for the terms with B is exactly the same.

xTB−1b− 1

2
xTB−1x− 1

2
bTB−1b = −1

2

[
xTB−1x− 2xTB−1b− 1

2
bTB−1b

]
= −1

2
(x− b)TB−1(x− b)

With these, we have rewritten the exponential forms back to the original multivariate Gaussian exponents,
and following the calculations in part (a) we can split up the product in the intened way and get cN (x|c,C)
in the same way.

I’m wondering if there is an easier way of doing this, since calculating the product from the exponential
form just introduces some extra steps. But I cannot see an easier way.
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6.11. Iterated expectation. Showing this for the continuous case. For the discrete we can just replace the
integrals with sums. Defining X and Y as all possible values for x and y (such as R). Assuming that the
expectations exist which means we can change the order of the integrals (or sums). We will use the product
rule (P.R):

p(x, y) = p(x|y)p(y)

and the sum rule (S.R):

p(x) =

∫
Y

p(x, y)dy

EY [EX [x|y]] = EY
[ ∫

X

x · p(x|y)dx

]

=

∫
Y

∫
X

x · p(x|y)dx p(y)dy

=

∫
Y

∫
X

x · p(x|y)p(y)dxdy

P.R
=

∫
Y

∫
X

x · p(x, y)dxdy

=

∫
X

x

∫
Y

p(x, y)dydx

S.R
=

∫
X

x · p(x)dx

= EX [x]
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6.12 Will solve later.
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6.13. This is an important result for Monte Carlo simulations that allow us to turn uniformly distributed
values from u ∈ [0, 1] into variables from many distributions by calculating F−1(u). First, a short reminder
of the pdf and cdf for a uniform distribution on [0, 1].

0 1

1

1
2

0 1

If we have some Z ∼ U(0, 1), then P (Z ≤ 0.5) is the area marked in gray on the left image above. The
probability will be P (Z ≤ 0.5) = 0.5. The same is true for any value in [0, 1]. This is an important property
for U(0, 1) and is what we are going to prove.

Theorem 6.15
Let X be a continuous random variable with a strictly monotonic cumulative distribution function FX(x).
Then the random variable Y defined as

Y := FX(X) (6.132)

has a uniform distribution.

Proof.
Assume y ∈ (0, 1). We want to show that P (Y ≤ y) = y. Since FX(x) is strictly monotonic on (0, 1), it is
injective, so the inverse function is well defined.

P (Y ≤ y) = P (FX(X) ≤ y)

= P (F−1(FX(X)) ≤ F−1
X (y))

= P (X ≤ F−1
X (y))

= FX(F−1
X (y))

= y

So for y ∈ (0, 1), we have shown that P (Y ≤ y) = y. For y ≤ 0 then P (Y ≤ y) = 0 and for y ≥ 1 then
P (Y ≤ y) = 1. This proves that Y has a uniform distribution. �
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Chapter 7: Continuous Optimization - Exercises

7.1. Finding and classifying the stationary points of:

f(x) = x3 + 6x2 − 3x− 5.

First, we calculate the first and second derivative:

f ′(x) = 3x2 + 12x− 3

f ′′(x) = 6x+ 12

The stationary points are where the derivative is 0.

f ′(x) = 0

3x2 + 12x− 3 = 0

x2 + 4x− 1 = 0

(x+ 2−
√

5)(x+ 2 +
√

5) = 0

So there are stationary points at: x1 = −2 +
√

5 and x2 = −2 −
√

5. Inserting these points into f ′′(x) in
order to classify the points.

f ′′(x1) = 6(−2 +
√

5) + 12 = −12 + 6
√

5 + 12 = 6
√

5 > 0

f ′′(x2) = 6(−2−
√

5) + 12 = −12− 6
√

5 + 12 = −6
√

5 < 0

Positive second derivative means x1 is a local minimum: f(x1) ≈ −5.36.
Negative second derivative means x2 is a local maximum: f(x2) ≈ 39.36

Illustration of the function f(x) = x3 + 6x2 − 3x− 5:

−8 −6 −4 −2 2

−20

20

40
(−2−

√
5, 39.36)

(−2 +
√

5,−5.36)
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7.2
In gradient descent we want to minimize some objective function L(·) by using the parameter θ (which
could be the parameters of some model, like α and β in a simple linear regression).

In gradient descent we start at some random point and update the parameters according to the gradient
of L which decides the DIRECTION we will go, and according to some step-size parameter γ, which decides
how FAR we will go.

In standard gradient descent, this is done for all 1, . . . , N data points:

θi+1 = θi − γi(∇L(θi))
T = θi − γi

N∑
i=1

(∇Ln(θi))
T (7.15)

As discussed in the text book, this can often be simplified by using mini-batches which uses k < N points
instead of doing the full calculations. Very often this will lead to the same solution with the advantage of
being a lot computationally cheaper to do. In stochastic gradient descent, with k = 1 we could rewrite the
formula as follows:

For some λ ∈ {1, . . . , N}, θi+1 = θi − γi(∇Lλ(θi))
T

We update the parameters wrt. a single Lλ.

7.3. Considering the validity of statements on convex sets.

a. Statement: The intersection of any two convex sets is convex.
This is true, which we can prove.

Proof.
Assume A and B are convex sets. Now assume x, y ∈ A ∩ B. Since A is convex then for any θ ∈ [0, 1] we
have θx+ (1− θ)y ∈ A ∩B. The same property follows from B. Hence, A ∩B is a convex set. �

b. Statement: The union of any two convex sets is convex.
This is false. Counterexample: disjoint circles.

c. Statement: The difference of a convex set A from another convex set B is convex.
This is false. Counterexample: A is a subset of B.

Illustrations. Red lines show examples of where the convexity property is violated, since the convexity
property requires the line between two points in the set to also be contained in the set.

A ∩B

A

B

A ∪B

A

B

B/A

B

A
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7.4. Considering the validity of statements on convex functions.

a. Statement: The sum of any two convex functions is convex.

This is true. Will not prove this here since it was already proved in the text book in example 7.4. (Equations
(7.34) to (7.37)).

b. Statement: The difference of any two convex functions is convex.

This is false. Consider the two convex functions f(x) = x2 and g(x) = 2x2, then h(x) = f(x)− g(x) = −x2
which is equal to −f(x) and therefore a concave function.

c. Statement: The product of any two convex functions is convex.

This is false. Set f(x) = x2 + 2x and g(x) = x2 − 2x which are both convex. Then the product is:

h(x) = f(x)g(x) = x4 − 4x2 = x2(x2 − 4).

By setting θ = 1
2

and x = −1 and y = 1 we get:

h(θx+ (1− θ)y) = h

(
1

2
(−1) +

1

2
(1)

)
= h(0) = 0

θh(x) + (1− θ)h(y) =
1

2
h(1) +

1

2
h(−1) =

1

2
(−3) +

1

2
(−3) = −3

So, θh(x) + (1− θ)h(y) < h(θx+ (1− θ)y) which shows that the product h(x) is not convex.

d. Statement: The maximum of any two convex functions is convex.

This is true.
Proof.
Assume f and g are convex functions and define h(x) := max(f(x), g(x)). Let x,y ∈ RD. Also assume,
without loss of generality that

g(θx + (1− θ)y) ≤ f(θx + (1− θ)y).

(Just name the functions accordingly). Then:

h(θx + (1− θ)y) = max(f(θx + (1− θ)y), g(θx + (1− θ)y))

= f(θx + (1− θ)x)

≤ θf(x) + (1− θ)f(y)

≤ θmax(f(x), g(x)) + (1− θ) max(f(y), g(y))

= θh(x) + (1− θ)h(y)

In conclusion, this shows that h satisfies the condition for convexity:

h(θx + (1− θ)y) ≤ θh(x) + (1− θ)h(y) �
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7.5. Rewriting the optimization problem in standard matrix form. (We will use x1, x2 instead of x0, x1.)
Start by noting that:

pTx + ξ = p1x1 + p2x2 + (1)ξ,

so we can set q ∈ R3 as [p1 p2 1] and set x ∈ R3 as [x1 x2 ξ].
Next are the constraints. x1 ≤ 0, x2 ≤ 3 and ξ ≥ 0, or equivalently, −ξ ≤ 0, which we can easily write

in matrix form. We get:

max
x∈R3,ξ∈R

p1p2
1

T x1x2
ξ


subject to

1 0 0
0 1 0
0 0 −1

x1x2
ξ

 ≤
0

3
0


If we make the following definitions:

c =

p1p2
1

 , x =

x1x2
ξ

 , A =

1 0 0
0 1 0
0 0 −1

 , b =

0
3
0

 ,
we can formulate the original problem in the standard, matrix form:

max
x∈R3,ξ∈R

cTx

subject to Ax ≤ b

7.6. Deriving the dual linear program by using the Lagrange duality. We are given the following primal
problem:

min
x∈R2

−
[
5
3

]T [
x1
x2

]

subject to


2 2
2 −4
−2 1
0 −1
0 1


[
x1
x2

]
≤


33
8
5
−1
8


When we have defined an optimization problem in the standard matrix notation, we can easily convert it
to the dual problem like this:

PRIMAL PROBLEM

min
x∈RD

cTx

subject to Ax ≤ b

=⇒

DUAL PROBLEM

max
λ∈Rm

−bTλ

subject to c + ATλ = 0

λ ≥ 0
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By just filling in the vectors, we get the dual problem.

max
λ∈R5

−


33
8
5
−1
8



λ1

λ2

λ3

λ4

λ5



subject to −
[
5
3

]
+

[
2 2 −2 0 0
2 −4 1 −1 1

]
λ1

λ2

λ3

λ4

λ5

 =


0
0
0
0
0

 ,
λ ≥ 0

Both these problems were solved in Python (see Appendix), and we verified that the primal problem has
the minimal value −74.167 for values x1 = 37

3
≈ 12.333 and x2 = 25

6
≈ 4.167 (as shown in the plot).

Verifying:

cTx = (−5)

(
37

3

)
+ (−3)

(
25

6

)
= −445

6
= −74.1667

The dual problem has the same solution with λ1 = 13
6

and λ2 = 1
3

and λ3 = λ4 = λ5 = 0, which we can
verify gives the same value:

−bTλ = (−33)

(
13

6

)
+ (−8)

(
1

3

)
= −445

6
= −74.1667

Illustration of the primal problem, with the optimal point marked in red. (Not possible to visualize the
dual problem as it is in 5D-space).

−4 −2 2 4 6 8 10 12 14

−2

2

4

6

8

10

12

14

(12.333, 4.1666)
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7.7. We have the following quadratic program:

min
x∈R2

1

2

[
x1
x2

]T [
2 1
1 4

] [
x1
x2

]
+

[
5
3

]T [
x1
x2

]

subject to


1 0
−1 0
0 1
0 −1

[x1x2
]
≤


1
1
1
1


From the text book, we know how to go from the primal problem to the dual problem, as outlined in
equation (7.45) and (7.52).

PRIMAL PROBLEM

min
x∈RD

1

2
xTQx + cTx

subject to Ax ≤ b

=⇒

DUAL PROBLEM

max
λ∈Rm

−1

2
(c + ATλ)TQ−1(c + ATλ)− bTλ

subject to λ ≥ 0

In our case, λ ∈ R4. Some calculations (skipping the details):

AT =

[
1 −1 0 0
0 0 1 −1

]

Q−1 =

[
4/7 −1/7
−1/7 2/7

]
c + ATλ =

[
5 + λ1 − λ2

3 + λ3 − λ4

]
Filling in all the values lets us express the dual quadratic problem.

max
λ∈R4

−1

2

[
5 + λ1 − λ2

3 + λ3 − λ4

]T [
4/7 −1/7
−1/7 2/7

] [
5 + λ1 − λ2

3 + λ3 − λ4

]
+


1
1
1
1


T 

λ1

λ2

λ3

λ4


subject to λ ≥ 0.

7.8. We have another quadratic programming problem, and note that we are minimizing over w:

min
w∈RD

1

2
wTw

subject to wTx ≥ 1

Written out in more detail:

1

2
wTw =

1

2

(
w2

1 + . . .+ w2
D

)
wTx = w1x1 + . . .+ wDxD ≥ 1

We are minimizing over w and we can rewrite the last expression as xTw since xTw = wTx.
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Our reformulated problem.

min
w∈RD

1

2
wTw

subject to − xTw ≤ −1

We can rewrite this to the standard primal problem matrix form by making the following observations, and
changing the given constraint to −xTw ≤ −1:

Q = ID, c = 0, A = −xT b = −1

Since we have a one-dimensional constraint, we get λ = λ, that is, λ is not a vector, but a number λ ∈ R.
Some intermediary calculations:

λ = λ

AT = (−xT )T = −x

Q−1 = ID

c + ATλ = 0− xλ = −xλ

Using these values in the general dual problem:

max
λ∈Rm

−1

2
(c + ATλ)TQ−1(c + ATλ)− bTλ

subject to λ ≥ 0

Which leaves us with:

max
λ∈R

−1

2
(−xλ)T (−xλ) + λ

subject to λ ≥ 0

Since λ is a real number, it is not affected by the transpose, and we can factor it out. The negatives also
cancel each other. The dual problem can therefore be written as:

max
λ∈R

−λ
2

2
xTx + λ

subject to λ ≥ 0

7.9. Finding the convex conjugate function f∗(s) of the negative entropy of x ∈ RD:

f(x) =

D∑
i=1

xi log xi.

Assuming the standard dot product. Will illustrate the convex conjuate a bit further. See plots on next
page.
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Graphical ilustration of the convex conjugate for f(x) = x2. On the left, there are three specific tangents.
On the right there are 80 tangent lines. In 2D they are lines, but more generally the are supporting
hyperplanes, and can be used to describe the convex set created by the convex function f(x) = x2, as we
can see.

In the left image we have three tangent lines with slope s. The supporting hyperplanes are lines of the
form y = sx+ c and the minimal point where these lines touches the convex set are marked with red points
(which are simply the tangent points). The minimal value c where the lines touches the function graph is
y = f(x0). By setting this equal to the value of the line, we get:

y = sx0 + c
y = f(x0)

}
=⇒ c = inf

x0

[
− sx0 + f(x0)

]
which is a description of the line that touches the convex function graph. The ’opposite’ of this is the
definition of the convex conjugate (for 1 dimensions).

f∗(s) = sup
x

[
sx− f(x)

]
Now, to the exercise. By the definition of the convex conjugate:

f∗(s) = sup
x

{
sTx− f(x)

}
= sup

x

{
sTx−

D∑
i=1

xi log xi

}

= sup
x

{
D∑
i=1

sixi − xi log xi

}

Key observation: we can put the supremum inside the sum.

=

D∑
i=1

(
sup
xi

{
sixi − xi log xi

})
(♥)

We can investigate each term separately. In order to find the xi that maximizes each term, we differentiate
it and set it equal to 0.
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d

dxi

(
sixi − xi log xi

)
= si −

(
(1) log xi + xi ·

1

xi

)
= si − log xi − 1

Setting equal to 0 and solving for xi.

si − log xi − 1 = 0

log xi = si − 1

xi = exp{si − 1}

This xi maximizes the expression in (♥). Replacing it back in:

f∗(s) =

D∑
i=1

(
sup
xi

{
sixi − xi log xi

})

=

D∑
i=1

(si exp{si − 1} − exp{si − 1} log exp{si − 1})

=
D∑
i=1

(si exp{si − 1} − exp{si − 1}(si − 1))

=

D∑
i=1

(
exp{si − 1}

(
si − (si − 1)

))
=

D∑
i=1

(
exp{si − 1}

(
���si − si + 1

))
=

D∑
i=1

exp{si − 1}

This function is the convex conjugate to the negative entropy.

7.10. Finding the convex conjugate of:

f(x) =
1

2
xTAx + bTx + c,

where A is strictly positive definite, which means it is symmetric, so it is invertible and AT = A and
(A−1)T = A−1. By the definition of the convex conjugate:

f∗(s) = sup
x

{
sTx− f(x)

}
= sup

x

{
sTx−

(1

2
xTAx + bTx + c

)}
= sup

x

{
sTx− 1

2
xTAx− bTx− c

}
(F)

To find the x that maximizes this, we differentiate it and set it equal to 0. Without going into the details:

d

dx

(
sTx− 1

2
xTAx− bTx− c

)
= sT −Ax− bT = s−Ax− b
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Setting equal to 0 and solving for x.

s−Ax− b = 0

Ax = s− b

x = A−1(s− b)

Setting this in for x in (F) (and removing the supremum). Recall that A is symmetric, so (A−1)T = A−1.

f∗(s) = sup
x

{
sTx− 1

2
xTAx− bTx− c

}
(F)

= sTA−1(s− b)− 1

2

(
A−1(s− b)

)T
AA−1(s− b)− bTA−1(s− b)− c

= sTA−1(s− b)− 1

2
(s− b)TA−1AA−1(s− b)− bTA−1(s− b)− c

= sTA−1(s− b)− bTA−1(s− b)− 1

2
(s− b)TA−1(s− b)− c

= (s− b)TA−1(s− b)− 1

2
(s− b)TA−1(s− b)− c

=
1

2
(s− b)TA−1(s− b)− c

which is the convex conjugate for the quadratic function.

7.11. We are using the hinge-loss (from SVM models):

L(α) = max{0, 1− α}

We will calculate the convex conjugate L∗(β). Then we will add an `2 proximal term, and calculate a
second convex conjugate. (Relevant note: double conjugation always results in a convex hull, the smallest
convex set containing a set):

L∗(β) +
γ

2
β2

where γ is a given hyperparameter (so we will treat it as a constant). By the definition of the convex
conjugate:

L∗(β) = sup
α
{βα− L(α))}

= sup
α
{βα−max{0, 1− α}}

= B
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Appendix

Exercise 2.12

Code for exercise 2.12 - first plot

import numpy as np

import plotly.graph_objects as go

x = np.linspace (-3,3,100)

y = np.linspace (-3,3,100)

X,Y = np.meshgrid(x,y)

# Planes

Z1 = 6*X + 3*Y

Z2 = -2*X + 5*Y

fig = go.Figure(data = [

go.Surface(x = x,y = y,z = Z1, opacity =1.0, colorscale=’Purp’)

,go.Surface(x = x,y = y,z = Z2 , opacity =1.0, colorscale=’Teal’)

])

fig.update_layout(

autosize=False ,

width =800,

height =800)

fig.show()

Python

Results:
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Exercise 2.12

Code for exercise 2.12 - second plot

import numpy as np

import plotly.graph_objects as go

x = np.linspace (-3,3,100)

y = np.linspace (-3,3,100)

X,Y = np.meshgrid(x,y)

# Planes

Z1 = 6*X + 3*Y

Z2 = -2*X + 5*Y

# Intersecting line

t = np.linspace (-0.75, 0.75, 500)

xl, yl , zl = t, 4*t, 18*t

fig = go.Figure(data = [

go.Surface(x = x,y = y,z = Z1, opacity =1.0, colorscale=’Purp’)

,go.Surface(x = x,y = y,z = Z2 , opacity =1.0, colorscale=’Teal’)

,go.Scatter3d(x = xl, y = yl , z = zl, mode=’markers ’,

marker=dict(color=’rgb(0,0,0)’, size =1))

])

fig.update_layout(

autosize=False ,

width =800,

height =800)

fig.show()

Python

Results:
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Exercise 2.15

Code example for 2.15 c.

import numpy as np

import plotly.graph_objects as go

x = np.linspace (-1,1,100)

y = np.linspace (-1,1,100)

X,Y = np.meshgrid(x,y)

# Planes

Z1 = X + Y

# Axes

xaxisX = np.linspace(-2, 2, 1000)

xaxisY = 0*np.linspace(-2, 2, 1000)

xaxisZ = 0*np.linspace(-2, 2, 1000)

yaxisX = 0*np.linspace(-2, 2, 1000)

yaxisY = np.linspace(-2, 2, 1000)

yaxisZ = 0*np.linspace(-2, 2, 1000)

zaxisX = 0*np.linspace(-2, 2, 1000)

zaxisY = 0*np.linspace(-2, 2, 1000)

zaxisZ = np.linspace(-2, 2, 1000)

fig = go.Figure(data = [

go.Surface(x = x,y = y,z = Z1, opacity =0.9, colorscale=’Purp’)

,go.Scatter3d(x = xaxisX , y = xaxisY , z = xaxisZ , mode=’markers ’,

marker=dict(color=’rgb(0,0,0)’, size =0.7))

,go.Scatter3d(x = yaxisX , y = yaxisY , z = yaxisZ , mode=’markers ’,

marker=dict(color=’rgb(0,0,0)’, size =0.7))

,go.Scatter3d(x = zaxisX , y = zaxisY , z = zaxisZ , mode=’markers ’,

marker=dict(color=’rgb(0,0,0)’, size =0.7))

])

fig.update_layout(

autosize=False ,

width =800,

height =800)

fig.show()

Python

Results:
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Exercise 5.6

Finding the trace for the simplified calculations for exercise 5.6.
We have the following matrices:

X =

[
x11 x12
x21 x22

]
, A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
Calculating AXB.

AXB =

[
a11 a12
a21 a22

] [
x11 x12
x21 x22

] [
b11 b12
b21 b22

]

=

[
a11 a12
a21 a22

] [
x11b11 + x12b21 x11b12 + x12b22
x21b11 + x22b21 x21b12 + x22b22

]

=

[
a11 a12
a21 a22

] [
b11x11 + b21x12 b12x11 + b22x12
b11x21 + b21x22 b12x21 + b22x22

]

=

[
a11(b11x11 + b21x12) + a12(b11x21 + b21x22) a11(b12x11 + b22x12) + a12(b12x21 + b22x22)
a21(b11x11 + b21x12) + a22(b11x21 + b21x22) a21(b12x11 + b22x12) + a22(b12x21 + b22x22)

]

=

[
a11b11x11 + a11b21x12 + a12b11x21 + a12b21x22 a11b12x11 + a11b22x12 + a12b12x21 + a12b22x22
a21b11x11 + a21b21x12 + a22b11x21 + a22b21x22 a21b12x11 + a21b22x12 + a22b12x21 + a22b22x22

]
The trace is just the sum of the diagonal elements.

trace(AXB) = a11b11x11 + a11b21x12 + a12b11x21 + a12b21x22

+ a21b12x11 + a21b22x12 + a22b12x21 + a22b22x22
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Exercise 6.2

R-code for making plots for exercise 6.2. Plot number 1.

library(mvtnorm)

library(plotly)

DIM = 50

X1VALS = seq(from = 7, to = 12, length.out = DIM) # X

X2VALS = seq(from = -2.5, to = 3.2, length.out = DIM) # Y

N1 = length(X1VALS)

N2 = length(X2VALS)

SURF = matrix(rep(0, N1*N2), ncol = N1)

# Multivariate Gaussian parameters

means1 <- matrix(c(10 ,1), ncol = 1)

sigma1 <- matrix(c(1,0,0,1), ncol = 2)

for(i in 1:N1) {

for(j in 1:N2) {

xVal = c(X1VALS[i], X2VALS[j])

SURF[i, j] = mvtnorm :: dmvnorm(xVal ,

mean = means1 ,

sigma = sigma1)

}

}

plot_ly(x = X1VALS ,

y = X2VALS ,

z = SURF) %>% add_surface ()

R

Results:
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Exercise 6.2

Plot number 2 for exercise 6.2

library(mvtnorm)

library(plotly)

DIM = 50

X2VALS = seq(from = -6, to = 6, length.out = DIM) # Y

X1VALS = seq(from = -6, to = 6, length.out = DIM) # X

N1 = length(X1VALS)

N2 = length(X2VALS)

SURF = matrix(rep(0, N1*N2), ncol = N1)

# Multivariate Gaussian parameters

means2 <- matrix(c(0,0), ncol = 1)

sigma2 <- matrix(c(8.4 ,2 ,2 ,1.7), ncol = 2)

for(i in 1:N1) {

for(j in 1:N2) {

xVal = c(X1VALS[i], X2VALS[j])

SURF[i, j] = mvtnorm :: dmvnorm(xVal ,

mean = means2 ,

sigma = sigma2)

}

}

plot_ly(x = X1VALS ,

y = X2VALS ,

z = SURF) %>% add_surface ()

R

Results:
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Exercise 6.2

Plot number 3 for exercise 6.2

library(mvtnorm)

library(plotly)

DIM = 50

X1VALS = seq(from = -10, to = 18, length.out = DIM) # X

X2VALS = seq(from = -4, to = 4, length.out = DIM) # Y

N1 = length(X1VALS)

N2 = length(X2VALS)

SURF = matrix(rep(0, N1*N2), ncol = N1)

# Multivariate Gaussian parameters

means1 <- matrix(c(10 ,1), ncol = 1)

sigma1 <- matrix(c(1,0,0,1), ncol = 2)

means2 <- matrix(c(0,0), ncol = 1)

sigma2 <- matrix(c(8.4 ,2 ,2 ,1.7), ncol = 2)

for(i in 1:N1) {

for(j in 1:N2) {

xVal = c(X1VALS[i], X2VALS[j])

dist1 = mvtnorm :: dmvnorm(xVal ,

mean = means1 ,

sigma = sigma1)

dist2 = mvtnorm :: dmvnorm(xVal ,

mean = means2 ,

sigma = sigma2)

SURF[i, j] = 0.4*dist1 + 0.6*dist2

}

}

plot_ly(x = X1VALS ,

y = X2VALS ,

z = SURF) %>% add_surface ()

R

Results:
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Exercise 6.2

Plots for marginal distributions in exercise 6.2.

# Marginal distribution p(x)

x = seq(from=-10, to=14, length.out = 100)

z1 = 0.4*dnorm(x, mean = 10, sd = 1) + 0.6*dnorm(x, mean = 0, sd = sqrt (8.4))

# Marginal distribution p(y)

y = seq(from=-5, to=5, length.out = 100)

z2 = 0.4*dnorm(y, mean = 2, sd = 1) + 0.6*dnorm(y, mean = 0, sd = sqrt (1.7))

par(mfrow=c(1,2))

plot(x, z1 , type="l", main = "p(x)")

plot(y, z2 , type="l", main = "p(y)")

R

Results:
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Exercise 6.2

Monte Carlo simulations for 6.2 b).

# Monte Carlo simulation

N = 1000000

# Calculating median

Z = rnorm(N)

zAMC1 = 0.4*(10 + 1*Z) #rnorm(N, mean = 10, sd = 1) +

zAMC2 = 0.6*(0 + sqrt (8.4)*Z) #rnorm(N, mean = 0, sd = sqrt (8.4))

M1 = median(c(zAMC1 , zAMC2))

print(M1)

# Z = rnorm(N) # Makes no difference

zBMC1 = 0.4*(2 + 1*Z) #rnorm(N, mean = 10, sd = 1) +

zBMC2 = 0.6*(0 + sqrt (1.7)*Z) #rnorm(N, mean = 0, sd = sqrt (8.4))

M2 = median(c(zBMC1 , zBMC2))

print(M2)

# Marginal distribution p(x)

x = seq(from=-10, to=14, length.out = 10000)

z1 = 0.4*dnorm(x, mean = 10, sd = 1) + 0.6*dnorm(x, mean = 0, sd = sqrt (8.4))

# Marginal distribution p(y)

y = seq(from=-5, to=5, length.out = 10000)

z2 = 0.4*dnorm(y, mean = 2, sd = 1) + 0.6*dnorm(y, mean = 0, sd = sqrt (1.7))

# Calculating mode

modeX = x[which.max(z1)]

modeY = y[which.max(z2)]

modeX

modeY

par(mfrow=c(1,2))

plot(x, z1 , type="l", main = "p(x)")

abline(v=4, col="purple") # Mean

abline(v=3.253123 , col="blue") # Median

abline(v=9.9988 , col="darkgreen") # Mode

plot(y, z2 , type="l", main = "p(y)")

abline(v=0.8, col="purple") # Mean

abline(v=0.5290558 , col="blue") # Median

abline(v=1.330633 , col="darkgreen") # Mode

R

Results:
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Exercise 6.10

Some details on the matrix operations in exercise 6.10 b). Let’s verify that it works for a 2D multivariate
Gaussian to understand the relationship. Let’s set D = 2 and:

x =

[
x1
x2

]
, µ =

[
µ1

µ2

]
, Σ−1 =

[
σ11 σss
σss σ22

]
As mentioned in the text, we have the following for the general exponential case:

h(x) = (2π)−
D
2 , φ(x) =

[
x

vec(xxT )

]
, θ =

[
Σ−1µ

vec(− 1
2
Σ−1)

]
, A(θ) =

1

2
µTΣ−1µ+

1

2
log |Σ|

Also as mentioned, the vec operator simply stacks the columns in a matrix. In details::

xxT =

[
x1
x2

] [
x1 x2

]
=

[
x21 x1x2
x1x2 x22

]
=⇒ vec(xxT ) =


x21
x1x2
x1x2
x22



−1

2
Σ−1 = −1

2

[
σ11 σss
σss σ22

]
=⇒ vec

(
−1

2
Σ−1

)
= −1

2


σ11

σss
σss
σ22


The general exponential form can be written as:

f(x|µ,Σ) = h(x) exp
[
φ(x)Tθ −A(θ)

]

= (2π)−1 exp




x1
x2
x21
x1x2
x1x2
x22



T 
σ11µ1 + σssµ2

σssµ1 + σ22µ2

−(1/2)σ11

−(1/2)σss
−(1/2)σss
−(1/2)σ22

−
1

2
µTΣ−1µ− 1

2
log |Σ|


Moving out the Σ term.

= (2π)−1|Σ|−1/2 exp




x1
x2
x21
x1x2
x1x2
x22



T 
σ11µ1 + σssµ2

σssµ1 + σ22µ2

−(1/2)σ11

−(1/2)σss
−(1/2)σss
−(1/2)σ22

−
1

2
µTΣ−1µ


Now some intermediary calculations. From the dot product, the first 2 terms will give:

x1(σ11µ1 + σssµ2) + x2(σssµ1 + σ22µ2) =
[
σ11µ1 + σssµ2 σssµ1 + σ22µ2

] [x1
x2

]
=
[
µ1 µ2

] [σ11 σss
σss σ22

] [
x1
x2

]
= µTΣ−1x
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The last 4 elements in the dot product have a similar argument:

−1

2

(
x21σ11 + x1x2σss + x1x2σss + x22σ22

)
= −1

2

[
x1σ11 + x2σss x1σss + x2σ22

] [x1
x2

]
= −1

2

[
x1 x2

] [σ11 σss
σss σ22

] [
x1
x2

]
= −1

2
xTΣ−1x

One other rewrite we will need, which works because Σ−1 is symmetric:

xTΣµ =
[
x1 x2

] [σ11 σss
σss σ22

] [
µ1

µ2

]
=
[
x1 x2

] [σ11µ1 + σssµ2

σssµ1 + σ22µ2

]
= x1σ11µ1 + x1σssµ2 + x2σssµ1 + x2σ22µ2

= µ1σ11x1 + µ1σssx2 + µ2σssx1 + µ2σ22x2

=
[
µ1 µ2

] [σ11x1 + σssx2
σssx1 + σ22x2

]
=
[
µ1 µ2

] [σ11 σss
σss σ22

] [
x1
x2

]
= µTΣx

Returning to the main calculation and making the replacements.

f(x|µ,Σ) = (2π)−1|Σ|−1/2 exp




x1
x2
x21
x1x2
x1x2
x22



T 
σ11µ1 + σssµ2

σssµ1 + σ22µ2

−(1/2)σ11

−(1/2)σss
−(1/2)σss
−(1/2)σ22

−
1

2
µTΣ−1µ


= (2π)−1|Σ|−1/2 exp

{
−1

2
xTΣ−1x+ µTΣ−1x− 1

2
µTΣ−1µ

}
= (2π)−1|Σ|−1/2 exp

{
−1

2

[
xTΣ−1x− 2µTΣ−1x+ µTΣ−1µ

]}
= (2π)−1|Σ|−1/2 exp

{
−1

2

[
xTΣ−1x− µTΣ−1x− µTΣ−1x+ µTΣ−1µ

]}
Rewriting term as shown above.

= (2π)−1|Σ|−1/2 exp

{
−1

2

[
xTΣ−1x− xTΣ−1µ− µTΣ−1x+ µTΣ−1µ

]}
= (2π)−1|Σ|−1/2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
∼ N (x|µ,Σ−1)

Which verifies the relationship! For further details, see e.g. this blog post:
https://maurocamaraescudero.netlify.app/post/multivariate-normal-as-an-exponential-family-distribution/
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Exercise 7.6

PRIMAL PROBLEM for exercise 7.6.

import numpy as np

from scipy.optimize import linprog

A = np.array ([[2, 2], [2,-4], [-2, 1], [0, -1], [0, 1]])

b = np.array ([33,8,5,-1,8])

c = np.array ([-5,-3])

res = linprog(c, A_ub=A, b_ub=b, bounds =(None , None))

print("Optimal value:", res.fun.round (3), "\nX:", res.x.round (3))

Python

Output:

Optimal value: -74.167

X: [12.333 4.167]

DUAL PROBLEM for exercise 7.6.

import numpy as np

from scipy.optimize import linprog

A = np.array ([[2, 2, -2, 0, 0], [2,-4, 1, -1, 1]])

b = np.array ([5 ,3])

c = np.array ([33,8,5,-1,8]) # max [-b^T]* lambda corresponds to min [b^T]* lambda

res = linprog(c, A_eq=A, b_eq=b, bounds =(0, None))

print("Optimal value:", res.fun.round (3), "\nLambda:", res.x.round (3))

Python

Output:

Optimal value: 74.167

Lambda: [2.167 0.333 0. 0. 0. ]

Comment : We have to solve this as a minimum optimization problem in Python, so we switch −b to b in
the code. Gives the correct lambda values, but the optimal value gets the incorrect sign.
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